
An Empirical Study of Real-World WebAssembly Binaries
Security, Languages, Use Cases

Aaron Hilbig
aaron@hilbigpost.de
University of Stuttgart

Germany

Daniel Lehmann
mail@dlehmann.eu

University of Stuttgart
Germany

Michael Pradel
michael@binaervarianz.de
University of Stuttgart

Germany

ABSTRACT
WebAssembly has emerged as a low-level language for the web and
beyond. Despite its popularity in different domains, little is known
about WebAssembly binaries that occur in the wild. This paper
presents a comprehensive empirical study of 8,461 unique WebAs-
sembly binaries gathered from a wide range of sources, including
source code repositories, package managers, and live websites. We
study the security properties, source languages, and use cases of the
binaries and how they influence the security of the WebAssembly
ecosystem. Our findings update some previously held assumptions
about real-world WebAssembly and highlight problems that call
for future research. For example, we show that vulnerabilities that
propagate from insecure source languages potentially affect a wide
range of binaries (e.g., two thirds of the binaries are compiled from
memory unsafe languages, such as C and C++) and that 21% of all
binaries import potentially dangerous APIs from their host envi-
ronment. We also show that cryptomining, which once accounted
for the majority of all WebAssembly code, has been marginalized
(less than 1% of all binaries found on the web) and gives way to a
diverse set of use cases. Finally, 29% of all binaries on the web are
minified, calling for techniques to decompile and reverse engineer
WebAssembly. Overall, our results show that WebAssembly has left
its infancy and is growing up into a language that powers a diverse
ecosystem, with new challenges and opportunities for security re-
searchers and practitioners. Besides these insights, we also share
the dataset underlying our study, which is 58 times larger than the
largest previously reported benchmark.

CCS CONCEPTS
• Security and privacy→ Software and application security.

ACM Reference Format:
Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical
Study of Real-World WebAssembly Binaries: Security, Languages, Use Cases.
In Proceedings of the Web Conference 2021 (WWW ’21), April 19–23, 2021,
Ljubljana, Slovenia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3442381.3450138

1 INTRODUCTION
WebAssembly is a fast, compact, low-level byte code language origi-
nally intended for client-side execution in web browsers. It is widely

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3450138

supported and available in 93% of all global browser installations
as of February 2021.1 Beyond client-side web applications, WebAs-
sembly is also running on Node.js and even stand-alone runtimes.

Despite its growing popularity, the WebAssembly ecosystem is
severely understudied. To date, little is know about how the lan-
guage is used, for what purposes, and how this affects the security
of WebAssembly-based applications. In particular, we are interested
in the following research questions:

RQ1: Source languages and tools. WebAssembly is a compilation
target, and in principle any programming language can be compiled
to it. What languages are actually compiled to WebAssembly, how
much do they contribute to the overall population, and what tools
are used to produce the binaries? Answering these questions is
relevant for understanding the impact of issues that specific source
languages may have and for guiding future work toward source
languages and toolchains prevalent in practice.

RQ2: Vulnerabilities propagated from insecure source languages.
Recent work has shown that memory vulnerabilities in insecure
source languages, such as C and C++, may be exploited in Web-
Assembly binaries, sometimes even more easily than in native bi-
naries [18]. How large is the attack surface offered by real-world
WebAssembly binaries compiled from insecure languages, e.g., in
terms of dangerous APIs these binaries import from JavaScript or
in terms of vulnerable memory allocators they ship? Answering
this question will increase our understanding of the threat posed
by vulnerabilities compiled to the web.

RQ3: Cryptomining. Previous results show [24], and recent work
assumes [15, 25, 34, 43], that WebAssembly is frequently used for
cryptojacking, i.e., cryptomining performed in the browser of an
unsuspecting client. Is cryptomining still an important threat today?

RQ4: Use cases. As a general purpose language, WebAssembly
can serve many purposes in web applications and beyond. What
are the typical use cases of WebAssembly? Given that the language
is becoming more widely adopted, it is important to understand
what its use cases are and how this affects the security of the web.

RQ5: Minification and names. The ability to understand WebAs-
sembly binaries, e.g., for auditing third-party code or for reverse
engineering malware, depends on whether binaries contain mean-
ingful names for program elements, e.g., functions. Do real-world
WebAssembly binaries contain meaningful names or are they ob-
fuscated through minification?

Answering these and other questions requires a set ofWebAssembly
binaries that is (i) representative for how WebAssembly is used in

1https://caniuse.com/?search=WebAssembly

https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://caniuse.com/?search=WebAssembly

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

the wild and (ii) large enough to cover the diversity of real-world
WebAssembly usage. Currently, no such set of binaries exists.

The closest existing work is by Musch et al. [24], who report
on a study of WebAssembly usage in the top one million websites.
While inspiring, their study falls short in two respects. First, it has
been performed at a point in time when WebAssembly was still
in its infancy, with usage biased to early adopters, e.g., cryptomin-
ers, and a single toolchain dominating the ecosystem. Since then,
many changes have happened, including higher browser adoption,
alternative compilers that have become available, the shutdown of
Coinhive (a common cryptomining platform) [42], and the realiza-
tion that vulnerabilities in insecure source languages can also be
exploited in WebAssembly [18]. Second, the methodology proposed
by Musch et al. [24] focuses only on binaries found on the web, and
only on those that are executed when just visiting a website. By
only looking into client-side web applications, WebAssembly on
other platforms is disregarded, e.g., on Node.js, browser extensions,
and stand-alone WebAssembly runtime engines.

This paper presents a comprehensive empirical study of real-
world WebAssembly binaries. The core of our work is WasmBench,
a diverse set of 8,461 unique binaries gathered from a variety of
sources, including querying source code repositories and package
managers, searching the HTTP Archive, and crawling the web. The
binaries found through our methodology show that considering
only a single one of these data sources would miss a significant
fraction of the WebAssembly ecosystem. While we obviously can-
not guarantee to cover all kinds of real-world WebAssembly usages,
WasmBench provides not only a 58× larger benchmark, but also a
more diverse set of WebAssembly binaries, than the largest previ-
ously reported benchmark [24].

We use WasmBench to address the above research questions
through a combination of manual inspection, custom static analysis
tools, and statistical analyses. Our findings include:

• Real-world WebAssembly binaries are compiled from a va-
riety of source languages, including systems programming
languages, such as C, C++, Rust, and Go, higher level lan-
guages, such as AssemblyScript (a variant of TypeScript),
and some rather unexpected languages, such as COBOL and
Kotlin.

• The majority of binaries is compiled from memory-unsafe
languages, from which vulnerabilities may propagate into
WebAssembly binaries [18].

• 65% of all binaries and 44% of all functions in them use
the “unmanaged stack”, a portion of linear memory that is
unprotected by the virtual machine and that can be exploited
by attackers.

• 21% of all binaries import potentially dangerous APIs from
their host environment, e.g., the infamous eval, APIs to mod-
ify the DOM from JavaScript, or system call-like APIs to
interact with the network and file system on platforms out-
side the browser. An attacker compromising a binary may
abuse such APIs to trigger unexpected behavior.

• Contrary to earlier findings [24], cryptomining has dropped
significantly in relevance, comprising only 1% of all bina-
ries. Instead, we find applications with up to many millions

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

the wild and (ii) large enough to cover the diversity of real-world
WebAssembly usage. Currently, no such set of binaries exists.

The closest existing work is by Musch et al. [24], who report
on a study of WebAssembly usage in the top one million websites.
While inspiring, their study falls short in two respects. First, it has
been performed at a point in time when WebAssembly was still
in its infancy, with usage biased to early adopters, e.g., cryptomin-
ers, and a single toolchain dominating the ecosystem. Since then,
many changes have happened, including higher browser adoption,
alternative compilers that have become available, the shutdown of
Coinhive (a common cryptomining platform) [42], and the realiza-
tion that vulnerabilities in insecure source languages can also be
exploited in WebAssembly [18]. Second, the methodology proposed
by Musch et al. [24] focuses only on binaries found on the web, and
only on those that are executed when just visiting a website. By
only looking into client-side web applications, WebAssembly on
other platforms is disregarded, e.g., on Node.js, browser extensions,
and stand-alone WebAssembly runtime engines.

This paper presents a comprehensive empirical study of real-
world WebAssembly binaries. The core of our work is WasmBench,
a diverse set of 8,461 unique binaries gathered from a variety of
sources, including querying source code repositories and package
managers, searching the HTTP Archive, and crawling the web. The
binaries found through our methodology show that considering
only a single one of these data sources would miss a significant
fraction of the WebAssembly ecosystem. While we obviously can-
not guarantee to cover all kinds of real-world WebAssembly usages,
WasmBench provides not only a 58× larger benchmark, but also a
more diverse set of WebAssembly binaries, than the largest previ-
ously reported benchmark [24].

We use WasmBench to address the above research questions
through a combination of manual inspection, custom static analysis
tools, and statistical analyses. Our findings include:
• Real-world WebAssembly binaries are compiled from a variety
of source languages, including systems programming languages,
such as C, C++, Rust, and Go, higher level languages, such as
AssemblyScript (a variant of TypeScript), and some rather unex-
pected languages, such as COBOL and Kotlin.

• The majority of binaries is compiled from memory-unsafe lan-
guages, from which vulnerabilities may propagate into WebAs-
sembly binaries [18].

• 65% of all binaries and 44% of all functions in them use the “un-
managed stack”, a portion of linear memory that is unprotected
by the virtual machine and that can be exploited by attackers.

• 21% of all binaries import potentially dangerous APIs from their
host environment, e.g., the infamous eval, APIs to modify the
DOM from JavaScript, or system call-like APIs to interact with
the network and file system on platforms outside the browser.
An attacker compromising a binary may abuse such APIs to
trigger unexpected behavior.

• Contrary to earlier findings [24], cryptomining has dropped sig-
nificantly in relevance, comprising only 1% of all binaries. Instead,
we find applications with up to many millions of instructions
that cover diverse use cases, including visualization, interactive
shells for programming languages, media players, game engines,
data compression, and natural language processing.

int increment(int x)
{

return x + 1;
}

(a) C Source Code.

(func (param i32)
(result i32)

local.get 0
i32.const 1
i32.add

)

(b) WebAssembly
text format.

[...] // header with
// type info

20 00 // local.get 0
41 01 // i32.const 1
6a // i32.add
0b // end

(c) WebAssembly
binary format.

Figure 1: Example of a function compiled to WebAssembly.

• 28.8% of all binaries on the web are minified, calling for future
work on decompiling and reverse engineering WebAssembly, to
ensure that security analysts can understand web applications
despite the presence of low level components.
Overall, our findings show that WebAssembly is “growing up”,

which leads to a larger and much more diverse ecosystem than in
its early days. From a security perspective, this diversity has several
implications. First, the fact that there are now many legitimate
applications, and proportionally much fewer malicious ones, shifts
the focus from detectingmalicious code to handling vulnerable code.
Second, the large fraction of binaries that originate from “insecure”
source languages, in particular C and C++, shows the risk that
their problems, e.g., memory vulnerabilities, will now propagate to
the web. Mitigations against such memory vulnerabilities [18] are
becoming an important goal to keep the web safe. Third, the many
different compilation toolchains and their variants, e.g., in terms of
memory allocators compiled into the binaries, create a potentially
large attack surface. Automated tools to analyze and improve the
security of WebAssembly binaries are needed.

In summary, this paper contributes:
• The first comprehensive study of WebAssembly binaries gath-
ered from multiple sources, including client-side web applica-
tions, package managers, and source code repositories;

• A combination of automated program analyses, manual inspec-
tion, and statistical analysis to answer research questions about
the security, source languages, and use cases of WebAssembly;

• Empirical evidence and insights about security-related proper-
ties of real-world WebAssembly, some of which update earlier
findings and many of which call for future work on mitigation
techniques and analysis tools;

• By far the largest benchmark of WebAssembly binaries, which
wemake available as a basis for other studies and as a benchmark
for future tools: https://github.com/sola-st/WasmBench .

2 BACKGROUND
File formats and modules. WebAssembly is a low-level bytecode

language, executed on a stack-based virtual machine. Figure 1 shows
a small code example in C, the corresponding code in WebAssem-
bly’s .wat text format, and the same code in WebAssembly’s .wasm
binary format. The latter is usually used to distribute WebAssem-
bly. Instructions are arranged into functions, and functions are
arranged into modules, which correspond to files. We use the terms
“module” and “binary” interchangeably. Each module is divided
into multiple sections, including import and export sections that
declare functions shared with the environment, a code section that
defines functions and their bodies, and a data section that initializes
memory. Functions, types, and variables are referenced by indices.

Figure 1: Example of a function compiled to WebAssembly.

of instructions that cover diverse use cases, including vi-
sualization, interactive shells for programming languages,
media players, game engines, data compression, and natural
language processing.

• 28.8% of all binaries on theweb areminified, calling for future
work on decompiling and reverse engineering WebAssem-
bly, to ensure that security analysts can understand web
applications despite the presence of low level components.

Overall, our findings show that WebAssembly is “growing up”,
which leads to a larger and much more diverse ecosystem than in
its early days. From a security perspective, this diversity has several
implications. First, the fact that there are now many legitimate
applications, and proportionally much fewer malicious ones, shifts
the focus from detectingmalicious code to handling vulnerable code.
Second, the large fraction of binaries that originate from “insecure”
source languages, in particular C and C++, shows the risk that
their problems, e.g., memory vulnerabilities, will now propagate to
the web. Mitigations against such memory vulnerabilities [18] are
becoming an important goal to keep the web safe. Third, the many
different compilation toolchains and their variants, e.g., in terms of
memory allocators compiled into the binaries, create a potentially
large attack surface. Automated tools to analyze and improve the
security of WebAssembly binaries are needed.

In summary, this paper contributes:

• The first comprehensive study of WebAssembly binaries
gathered from multiple sources, including client-side web
applications, package managers, and source code reposito-
ries;

• A combination of automated program analyses, manual in-
spection, and statistical analysis to answer research ques-
tions about the security, source languages, and use cases of
WebAssembly;

• Empirical evidence and insights about security-related prop-
erties of real-world WebAssembly, some of which update
earlier findings and many of which call for future work on
mitigation techniques and analysis tools;

• By far the largest benchmark of WebAssembly binaries,
which we make available as a basis for other studies and
as a benchmark for future tools: https://github.com/sola-
st/WasmBench .

2 BACKGROUND
File formats and modules. WebAssembly is a low-level bytecode

language, executed on a stack-based virtual machine. Figure 1 shows
a small code example in C, the corresponding code in WebAssem-
bly’s .wat text format, and the same code in WebAssembly’s .wasm

https://github.com/sola-st/WasmBench
https://github.com/sola-st/WasmBench

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Phase 1
Collection

• Querying
• Crawling
• Other

Phase 2
Dedup. & Filtering

Representative

Phase 3
Analysis

• Static Anal.
• Metadata
• Manual

Dataset
Wasm Binaries,
Metadata

Sources
GitHub, NPM,
WAPM, Addons,
Web, ...

RQs

Figure 2: Overview of the phases of our methodology.

binary format. The latter is usually used to distribute WebAssem-
bly. Instructions are arranged into functions, and functions are
arranged into modules, which correspond to files. We use the terms
“module” and “binary” interchangeably. Each module is divided
into multiple sections, including import and export sections that
declare functions shared with the environment, a code section that
defines functions and their bodies, and a data section that initializes
memory. Functions, types, and variables are referenced by indices.

Host environments. WebAssembly runs within a host environ-
ment, such as the browser, Node.js, or a standalone WebAssembly
runtime like wasmer or wasmtime. The host environment instanti-
ates theWebAssembly binary and can provide imported functions to
the module. For example, in a client-side web application, JavaScript
code can instantiate binaries through the WebAssembly.instantiate
and WebAssembly.Module APIs.

Linear memory. Each module instance has a linear memory sec-
tion, which can be thought of as an array of consecutive bytes. It
stores all data handled by the module, except for locals and globals
(which can only be of four primitive types), including all dynami-
cally allocated data structures. The i32 datatype is used for pointers
into linear memory. The linear memory has two implications. First,
programs that want to associate non-primitive data with functions
typically do so through a so-called “unmanaged stack”, which sim-
ply is a region in the linear memory used to represent the function
stack. This stack is called “unmanaged” because it is not protected
by the virtual machine and under full control of the program. As a
result, memory-unsafe behavior from source languages, e.g., C and
C++, can also affect WebAssembly binaries. Second, non-trivial ap-
plications often have their own memory allocator compiled into the
binary. Both the unmanaged stack and custom memory allocators
may allow attackers to exploit a WebAssembly binary [18].

Compilers, tools, and runtimes. Various compilers target Web-
Assembly, e.g., the Emscripten compiler for C and C++, the Rust
compiler, the AssemblyScript compiler, or the Asterius compiler
for Haskell. Several compilers sometimes share a common frame-
work, e.g., Emscripten and the Rust compiler are based on LLVM,
while the AssemblyScript compiler and Asterius are based on Bina-
ryen. Because the bare WebAssembly language does not provide
any built-in library, compilers often combine the compiled code
with a runtime environment. For example, the Emscripten runtime
environment and the WebAssembly system interface (WASI) both
offer a set of low-level system calls, e.g., to support file I/O and
networking.

3 METHODOLOGY
Our methodology is split into three phases (Figure 2). In the col-
lection phase, we obtain a large set of WebAssembly binaries from
a variety of sources. We select sources to cover WebAssembly in

All Sources

Web

Source
Code

Package
Managers

Manual

NPM

WAPM

Firefox
Addons

Survey

Other

GitHub

top 1,000 depended-on packages

2,350 WebAssembly-related packages

3,148 WebAssembly-related repositories

top 2,500 addons by average daily users

all 103 packages

HTTP Archive

Own
Crawling

Tranco list: top 1,000,000 websites

3 WebAssembly top lists

HTTP Archive: 40,000 URLs with WebAssembly in JS code

855 URLs to likely WebAssembly files

Figure 3: Sources from which we collect binaries.

different contexts and at different stages of deployment. Sections 3.1
to 3.4 present how we collect WebAssembly binaries from source
code repositories, package managers that distribute deployed soft-
ware, archived and live websites, and through manual search, re-
spectively. Figure 3 gives on overview of the different sources we
collect binaries from. Alongside each binary, we also collect meta-
data, e.g., on which website a binary was found. All activities related
to collecting binaries were done between April and September 2020.
Overall, the collection phase results in 51,148 binaries, including
duplicates and binaries that are not representative for real-world
usages of WebAssembly. Section 3.5 presents the filtering phase,
where we filter and deduplicate these binaries into a set of 8,461
unique binaries that serve as the basis for our study. Finally, the
third phase analyzes the set of binaries through a combination of
static code analysis, analysis of metadata associated with the bina-
ries, and manual inspection. We present the analysis phase along
with its results in Section 4.

To the best of our knowledge, no prior work has gathered Web-
Assembly binaries from such a diverse set of sources. As a result,
the number of binaries we obtain is 58 times larger than the largest
set studied so far (147 unique binaries) [24]. Our experimental re-
sults (Section 4.2) show that the sources we consider WebAssembly
binaries from complement each other, i.e., considering all of them
is crucial to obtain a representative dataset.

3.1 Collecting Binaries from Repositories
Our first method for collecting binaries looks into source code
repositories. Even though WebAssembly is a binary format, devel-
opers often store binaries into source code repositories, e.g., to ease
the installation of a project or to include third-party libraries. To
gather such binaries, we clone all public repositories that are in the
top 1,000 results of four queries to the GitHub search API:

• Repositories where “wasm” or “WebAssembly” is in the
repository name or description (i.e., two queries).

• Repositories that are tagged with “WebAssembly” as one of
the used programming languages.

• Repositories tagged with the topic “WebAssembly”.

Overall, the queries result in 3,148 repositories, which we clone,
and then search for files ending in .wasm.

3.2 Collecting Binaries from Package Managers
Once developers deploy a WebAssembly-based application, it is
often made available through a package manager. We consider three
software ecosystems that use WebAssembly.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

3.2.1 npm Packages. The Node PackageManager (npm) distributes
JavaScript code, some of which relies on WebAssembly modules.
Packages distributed via npm are typically used in server-side ap-
plications with Node.js or on the client side. To find npm packages
that contain WebAssembly binaries, we gather two sets of pack-
ages. First, from the full registry file of npm we compute the top
1,000 most depended-upon packages. Second, we query npm for all
packages that match at least one of the keywords “wasm” and “Web-
Assembly”, which yields 2,350 packages. We install these packages
and their transitive dependencies, and then search the resulting
7,198 packages for .wasm files.

3.2.2 wapmPackages. TheWebAssembly PackageManager (wapm)
specializes on distributing WebAssembly code. Most of the wapm
packages are intended to run standalone WebAssembly runtime
engines. Unlike for npm, we can afford to analyze all 103 available
packages. We install all packages and again extract all .wasm files.

3.2.3 Firefox Browser Add-ons. Browser extensions, traditionally
implemented in JavaScript, nowadays can also make use of Web-
Assembly code. To gather binaries used in browser extensions, we
download the top 2,500 Firefox add-ons from addons.mozilla.org, as
measured by average daily users. We then unpack the extensions’
XPI archives, and search again for .wasm files.

3.3 Collecting Binaries fromWebsites
Collecting WebAssembly binaries from the web involves several
challenges. First, as the web is too big to be searched in its entirety,
finding suitable starting points for exploring it is crucial. Second,
even when visiting a WebAssembly-powered website, it is non-
trivial to identify and collect WebAssembly binaries from it. Some
sites embed WebAssembly modules into JavaScript source code,
e.g., as base64-encoded strings that are decoded and instantiated
at runtime. For such sites, we must detect WebAssembly modules
when they are executed. Other websites spawn requests for Web-
Assembly modules but never execute them during our collection
process, e.g., because execution relies on specific user inputs. A
purely dynamic methodology would miss such binaries.

We address the first challenge, finding good websites as starting
points, through two techniques. On the one hand, we can build on
results from the HTTP Archive for finding sites known to con-
tain WebAssembly binaries (Section 3.3.1). On the other hand,
for our own crawling, we systematically start from potentially
WebAssembly-related seed URLs (Section 3.3.2). To address the
second challenge of detecting WebAssembly binaries during crawl-
ing, we analyze all websites through a combination of static and
dynamic detection techniques.

3.3.1 Direct Downloads Guided byHTTPArchive. TheHTTPArchive
project2 regularly crawls the web and makes the requests and re-
sponses available. Starting from URLs obtained from the Chrome
User Experience Report , the project currently covers over 5 million
top-level domains, monthly. We here focus on websites crawled
using the desktop version of Google Chrome, which we access via
Google’s BigQuery database system.

2https://httparchive.org/

We search the responses stored in the HTTP Archive tables for
likely WebAssembly binaries and then directly download the cor-
responding files. To this end, we query two tables, from months
May and June 2020, which contain information about all requests
made while crawling the websites, and the corresponding responses.
These tables, called summary_requests are 434.4 GB and 476.7 GB
large. We filter all requests in the tables by the MIME type of the re-
quested resource, keeping only those commonly used to serve Web-
Assembly, such as application/wasm and application/octet-stream,
and where .wasm appears in the URL. These queries result in a set
of 855 URLs. We download files from each of these URLs using wget

and keep all that start with \0asm, WebAssembly’s magic number.

3.3.2 Web Crawling. The HTTP Archive-guided search covers a
wide range of top-level domains, but it may miss WebAssembly
binaries on websites not covered by crawling a generic list of web-
sites and binaries that one cannot identify based on their MIME
type. To collect additional binaries, we also perform our own web
crawling. There are three components to our crawling: the seed list,
the crawling algorithm, and methods for detecting WebAssembly.

Seed lists. Any kind of web crawling requires a seed list of URLs
to start from.We consider three seed lists, one generic list of popular
websites and two lists targeted specifically at WebAssembly:

• Top one million websites. As a generic set of websites to ex-
plore, we start crawling from the one million most popular
websites on the Tranco list [28], a top list more resilient to
manipulation.

• “WebAssembly” in JavaScript files. WebAssembly binaries on
websites must be executed by some surrounding JavaScript
code, e.g., by calling WebAssembly.instantiate. To identify
websites with such JavaScript code, we query a table pro-
vided by the HTTP Archive that stores the full bodies of
all HTTP responses up to some size. We search this table,
which has a total size of 9.32 TB, with Google BigQuery for
all JavaScript responses that contain WebAssembly and add the
URLs of the corresponding websites to our seed list, which
results in about 40,000 URLs.

• WebAssembly top lists. As the most targeted seed list, we
start crawling from three hand-curated lists of notewor-
thy WebAssembly-related websites. These websites cover
projects using WebAssembly3, tools and demos4, and
WebAssembly-based games5.

Crawling algorithm. Given a seed list, our crawler visits each
URL on the list and recursively follows links on the visited websites.
The crawler visits each URL, with up to one retry. If the website
is loading successfully, the crawler waits until either the “DOM
content loaded” event is fired and all network connections have be-
come idle, or until a 30-second timeout occurs. The crawler collects
all WebAssembly binaries loaded or executed in this time (details
below). For each visited website, the crawler extracts more URLs to
explore from the href attribute of all <a>-tags on the site.

To control the amount of sites to visit, the crawler is configured
with two parameters: the recursion depth d , which bounds how

3https://madewithwebassembly.com/
4https://github.com/mbasso/awesome-wasm
5https://www.webassemblygames.com/

addons.mozilla.org
https://httparchive.org/
https://madewithwebassembly.com/
https://github.com/mbasso/awesome-wasm
https://www.webassemblygames.com/

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

many links away from the seed URLs to explore, and the exploration
breadthb, which bounds howmany links to follow on each explored
site. If a site has more than b links, the crawler picks b of them at
random. For the first two seed lists, we setd = b = 2, i.e., the crawler
visits at most seven sites per URL in the seed list. Because the third
seed list is the most focused one, we explore it more thoroughly
with d = 7 and b = 3, and repeat the exploration with 16 separate
crawler instances. We chose those parameters based on preliminary
experiments, to find most binaries in a given time budget.

Identifying WebAssembly binaries. For each website visited by
the crawler, we use a combination of two techniques to identify
WebAssembly binaries on the site. Our first detection mechanism
intercepts the website’s traffic using a local proxy that inspects
the headers and contents of all requests and responses. To iden-
tify WebAssembly modules, we check if the content-type header
matches application/wasm or application/octet-stream, or if the
URL contains .wasm, and then ensure that the response payload
starts with the proper magic number. If this is the case, we store
the loaded file as a WebAssembly binary. The key advantage of this
detection mechanism is that it detects WebAssembly modules even
if they are not executed during the crawler’s visit of the website.
The second detection mechanism tracks calls to APIs used for in-
stantiating WebAssembly modules, as proposed in prior work [24].
We transparently overwrite built-in JavaScript functions, such as
WebAssembly.instantiate, and analyze its invocations. In contrast
to the first detection mechanism, this mechanism can detect Web-
Assembly binaries that occur inline in JavaScript code, if executed.

3.4 Collecting Binaries Manually
In addition to automatically collecting WebAssembly binaries, we
also gather a small number of binaries manually. On the one hand,
we collect binaries throughmanual interaction with the web in daily
browsing between April and September 2020. On the other hand,
we asked WebAssembly developers on reddit.com/r/WebAssembly
in June 2020 for binaries they are willing to share. As discussed in
the results, these two manual collection methods complement our
automatically collected binaries with otherwise missed examples.

3.5 Deduplication and Filtering
After collecting binaries and associated metadata from the afore-
mentioned sources, we remove duplicates and filter binaries that
are not representative of real-world applications. To deduplicate
binaries, we compare files based on their SHA256 hash and remove
identical files. Unless mentioned otherwise, our study focuses in
the deduplicated dataset. In addition to deduplication, we remove
binaries that are non-representative of real-world applications, be-
cause they fall into at least one of the following categories. Binaries
that occur multiple times, e.g., across different sources, are only
removed if all occurrences of it were filtered out.

• Generated binary variants: Some GitHub repositories contain
binaries generated by research tools, e.g., to fuzz-test Web-
Assembly implementations, to superoptimize WebAssembly
code [4], or to perform code diversification [2]. Since these
tools turn a single binary into many, only slightly differ-
ent variants, we remove the generated variants. We identify

those variants by filename (e.g., *.opt.wasm) and path (e.g.,
binaries in afl_out/).

• Test suites: On GitHub and in some npm packages, we find
binaries that are used as test inputs forWebAssembly-related
tools, e.g., parsers, compilers, and virtual machines. One
large portion are binaries from the official specification test
suite, which often test only a single instruction or language
construct. We identify them by typical repositories and paths
(e.g., files in spectest/).

• Tutorial projects:Many npm projects and some GitHub repos-
itories are instances of users following WebAssembly tutori-
als for particular tool chains.6 Those binaries are small and
all very similar. We identify them based on common binary
names (e.g., hello_world_bg.wasm) and project names (e.g.,
test-wasm@0.0.1).

• Small and invalid binaries: Finally, we remove binaries that
contain ten or fewer instructions, and binaries that cannot
be validated by the reference WebAssembly binary toolkit
(WABT), even with all language extensions enabled.

4 RESULTS
Based on our WasmBench dataset of real-world WebAssembly bi-
naries, we address the research questions (RQs) described in the
introduction. For each RQ, we detail the analyses performed on
the dataset, the direct results, and then interpret those to obtain
insights, i.e., take-away points, often with a focus on security.

4.1 Implementation and Experimental Setup
The crawler is implemented based on Puppeteer and Puppeteer Clus-
ter, two Node.js libraries for controlling instances of the Chromium
browser, here version 83.0.4103.0. The static analyses described in
the following are implemented in several Rust programs to stat-
ically extract relevant features, such as instructions, names, etc.
from the binaries, complemented by Python scripts that perform
the final analyses. For parsing binaries, we use the wasmparser li-
brary, a project by the Bytecode Alliance. All experiments were run
on an Ubuntu 18.04 machine with two Intel Xeon CPUs at 2.2 GHz
running 48 threads, equipped with 256GB of memory. The crawling
was performed in chunks of 50,000 websites, where each chunk took
about 7 hours to finish, with a total of about 10 days for all crawling.
The static analyses usually finish within several minutes for the en-
tire dataset. Our entire dataset and the implementation are available
for others to build on at https://github.com/sola-st/WasmBench.

4.2 Overview of Dataset
Table 1 gives an overview of our dataset. For each source, the table
shows how many binaries we found, and how many remain after
deduplication and filtering. The last column shows how many bina-
ries are found only via a single source, illustrating the importance
of particular collection methods for obtaining a diverse dataset.

Sources. The largest contribution to the dataset are the GitHub
repositories and packages from npm. Given that WebAssembly
binaries on websites or in arbitrary packages are still relatively
scarce, selecting repositories and packages related to WebAssembly

6For example, the rustwasm book: https://rustwasm.github.io/docs/book/.

reddit.com/r/WebAssembly
https://github.com/sola-st/WasmBench
https://rustwasm.github.io/docs/book/

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

Table 1: Contribution of different sources to the dataset.

Source (see Figure 3)
Found Binaries

Total Unique Filtered Only

GitHub, search: wasm 44,218 21,117 6,830 6,641
NPM, top dependend-upon 14 8 8 3
NPM, search: wasm 3,488 2,452 1,163 1,036
WAPM, all 122 113 108 81
Firefox add-ons, top by users 29 17 17 15
Web, HTTP Archive 261 141 141 54
Web, crawling, with seed list: 2,923 432 412 298

HTTP Archive 2,046 268 254 128
Tranco top websites 769 167 164 86
WebAssembly top lists 108 89 76 43

Manual 93 89 88 57

All Sources 51,148 23,413 8,461

is an effective way of finding binaries. At the same time, the sources
where we do not query for WebAssembly specifically (i.e., most
of the web crawling, the top packages from npm, and Firefox add-
ons) still show that WebAssembly binaries are found in the wild in
popular projects used by millions of users. For the web, we also see
that all our four sources are essential for finding a diverse set of
WebAssembly binaries. Only crawling the top one million websites
would miss at least 225 unique binaries. The fact that the seed
lists from HTTP Archive and the WebAssembly top lists are much
smaller than the list of the top one million websites, yet the number
of found binaries are similar or even higher, shows that a targeted
seed list for crawling is key to finding otherwise missed binaries.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

Table 2: Binaries filtered out due to different criteria.

Filter
Removed Binaries

Total Unique

Generated binary variants, of those: 9,279 8,048
in CROW [2] repository 8,025 7,987

Test suites and files, of those: 26,138 5,283
variants of WebAssembly spec suite 25,133 4,931

Invalid WebAssembly binaries 13,593 3,513
Small binaries: <10 instructions 10,146 1,881
Tutorial projects, of those: 848 633

hello-wasm projects 695 506

All Filters 37,808 14,952

where we do not query for WebAssembly specifically (i.e., most
of the web crawling, the top packages from npm, and Firefox add-
ons) still show that WebAssembly binaries are found in the wild in
popular projects used by millions of users. For the web, we also see
that all our four sources are essential for finding a diverse set of
WebAssembly binaries. Only crawling the top one million websites
would miss at least 225 unique binaries. The fact that the seed
lists from HTTP Archive and the WebAssembly top lists are much
smaller than the list of the top one million websites, yet the number
of found binaries are similar or even higher, shows that a targeted
seed list for crawling is key to finding otherwise missed binaries.

Insight 1. All methods we use to collect binaries contribute in
a non-negligible way. Combining different sources and collection
techniques is crucial for obtaining a representative dataset.

Filtering. Deduplication and filtering non-representative binaries
(Section 3.5) significantly reduces the dataset (Table 2). In particular,
one repository that contains generated variants of input binaries is
important to filter, as it otherwise accounts for over 8,000 unique
binaries. From the second category, test suites, we also see that
test binaries are commonly reused across many projects (26,138
occurrences, but only 5,283 unique binaries), and that most of them
are from the official specification test suite. The last filter removes
binaries from a few, very similar tutorials, including more than 500
binaries from projects called hello-wasm.

Binary sizes. As a first proxy for the diversity of the collected
binaries, we look into their sizes and instruction count. Figure 4
shows the histogram and cumulative distribution of binary sizes
in bytes. The distribution of the number of instructions is similar
in shape and omitted for space reasons. While there are many
small binaries, there is a long and heavy tail towards larger sizes.
Two thirds of the binaries are larger than 20KB and have more
than 8,700 instructions. The median binary is 37.1 KB large and has
14,885 instructions. The largest binaries are a WebAssembly port
of TiDB7, a distributed SQL database written in Go, with 75.1MB
and 16.9M instructions, respectively, found as a wapm package;
opencascade.js8 (65.8MB, 22.2M instructions), a WebAssembly port
of an open source C++ CAD library, found on npm and GitHub;
and finally the Clang compiler, itself compiled to WebAssembly
(46.7MB, 12.6M instructions), found on wapm and GitHub.
7https://github.com/pingcap/tidb
8https://github.com/donalffons/opencascade.js

0 50 100 150 200
Size (kilobytes)

0

250

500

750

1000

1250

N
um

be
r

of
 b

in
ar

ie
s

(a) Histogram of the lower 80%
of the sizes of the binaries.

25 27 29 211 213 215 217 219 221 223 225 227

Size (bytes)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ti

le
 o

f
bi

na
ri

es

(b) Cumulative distribution of
the binary sizes (in log2 scale).

Figure 4: Distribution of binary sizes.

Insight 2. Complex, real-world applications with millions of lines
of code are compiled to WebAssembly.

4.3 RQ1: Source Languages and Tools
Given WebAssembly’s goal of being a universal bytecode, we study
which languages are compiled to it in practice, and which toolchains
are used for to it.

Analysis. It is non-trivial to infer from a binary which source
language and compiler has produced it. We rely on several com-
plementary methods. First, we check the producers section, where
some toolchains explicitly encode the source language(s) a program
is compiled from. Second, our analysis searches for characteris-
tic function names that appear in the import section, the export

section, or the optional name section. For example, _ZdaPv is the
name-mangled delete operator of C++; or runtime.gostring is a
Go runtime library function. Overall, we identify characteristic
function names for C++, C, Rust, Go, AssemblyScript, Kotlin, and
FStar. Third, the analysis searches for characteristic strings among
all text sequences of >3 ASCII characters in the data section. For
example, being core types, Result::unwrap and Option::unwrap fre-
quently appear in error messages of the Rust standard library. We
identify characteristic strings for C++, Rust, Matlab, and COBOL.
Fourth, if none of the above work, we analyze sibling files of bina-
ries collected from code repositories and package managers. Sibling
file here means a file in the same directory that shares the file
name except for the extension. We take into account extensions for
C, C++, Rust, Go, AssemblyScript/TypeScript, the WebAssembly
text format (.wat/.wast), and several smaller languages. Finally, for
some source code repositories and packages with multiple uniden-
tified binaries, we manually inspect source code, build scripts, and
binaries. For each of the automated methods above, we manually
inspect binaries and the predictions to confirm that our heuristics
are precise. For binaries where multiple methods identify the source
language, we confirm that the predictions are consistent.

Results. Figure 5a shows the inferred source languages. We see
that almost two thirds (64.2%) of the binaries are compiled from C,
C++, or a combination of both. Given that these are memory-unsafe
languages, plagued with decades of vulnerabilities [41] and that
WebAssembly binaries are not automatically safe from exploita-
tion [18], this result is highly worrying.

Filtering. Deduplication and filtering non-representative binaries
(Section 3.5) significantly reduces the dataset (Table 2). In particular,
one repository that contains generated variants of input binaries is
important to filter, as it otherwise accounts for over 8,000 unique
binaries. From the second category, test suites, we also see that
test binaries are commonly reused across many projects (26,138
occurrences, but only 5,283 unique binaries), and that most of them
are from the official specification test suite. The last filter removes
binaries from a few, very similar tutorials, including more than 500
binaries from projects called hello-wasm.

Binary sizes. As a first proxy for the diversity of the collected
binaries, we look into their sizes and instruction count. Figure 4
shows the histogram and cumulative distribution of binary sizes
in bytes. The distribution of the number of instructions is similar
in shape and omitted for space reasons. While there are many
small binaries, there is a long and heavy tail towards larger sizes.
Two thirds of the binaries are larger than 20KB and have more
than 8,700 instructions. The median binary is 37.1 KB large and has
14,885 instructions. The largest binaries are a WebAssembly port
of TiDB7, a distributed SQL database written in Go, with 75.1MB
and 16.9M instructions, respectively, found as a wapm package;

7https://github.com/pingcap/tidb

Table 2: Binaries filtered out due to different criteria.

Filter
Removed Binaries

Total Unique

Generated binary variants, of those: 9,279 8,048
in CROW [2] repository 8,025 7,987

Test suites and files, of those: 26,138 5,283
variants of WebAssembly spec suite 25,133 4,931

Invalid WebAssembly binaries 13,593 3,513
Small binaries: <10 instructions 10,146 1,881
Tutorial projects, of those: 848 633

hello-wasm projects 695 506

All Filters 37,808 14,952

opencascade.js8 (65.8MB, 22.2M instructions), a WebAssembly port
of an open source C++ CAD library, found on npm and GitHub;
and finally the Clang compiler, itself compiled to WebAssembly
(46.7MB, 12.6M instructions), found on wapm and GitHub.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

Table 2: Binaries filtered out due to different criteria.

Filter
Removed Binaries

Total Unique

Generated binary variants, of those: 9,279 8,048
in CROW [2] repository 8,025 7,987

Test suites and files, of those: 26,138 5,283
variants of WebAssembly spec suite 25,133 4,931

Invalid WebAssembly binaries 13,593 3,513
Small binaries: <10 instructions 10,146 1,881
Tutorial projects, of those: 848 633

hello-wasm projects 695 506

All Filters 37,808 14,952

where we do not query for WebAssembly specifically (i.e., most
of the web crawling, the top packages from npm, and Firefox add-
ons) still show that WebAssembly binaries are found in the wild in
popular projects used by millions of users. For the web, we also see
that all our four sources are essential for finding a diverse set of
WebAssembly binaries. Only crawling the top one million websites
would miss at least 225 unique binaries. The fact that the seed
lists from HTTP Archive and the WebAssembly top lists are much
smaller than the list of the top one million websites, yet the number
of found binaries are similar or even higher, shows that a targeted
seed list for crawling is key to finding otherwise missed binaries.

Insight 1. All methods we use to collect binaries contribute in
a non-negligible way. Combining different sources and collection
techniques is crucial for obtaining a representative dataset.

Filtering. Deduplication and filtering non-representative binaries
(Section 3.5) significantly reduces the dataset (Table 2). In particular,
one repository that contains generated variants of input binaries is
important to filter, as it otherwise accounts for over 8,000 unique
binaries. From the second category, test suites, we also see that
test binaries are commonly reused across many projects (26,138
occurrences, but only 5,283 unique binaries), and that most of them
are from the official specification test suite. The last filter removes
binaries from a few, very similar tutorials, including more than 500
binaries from projects called hello-wasm.

Binary sizes. As a first proxy for the diversity of the collected
binaries, we look into their sizes and instruction count. Figure 4
shows the histogram and cumulative distribution of binary sizes
in bytes. The distribution of the number of instructions is similar
in shape and omitted for space reasons. While there are many
small binaries, there is a long and heavy tail towards larger sizes.
Two thirds of the binaries are larger than 20KB and have more
than 8,700 instructions. The median binary is 37.1 KB large and has
14,885 instructions. The largest binaries are a WebAssembly port
of TiDB7, a distributed SQL database written in Go, with 75.1MB
and 16.9M instructions, respectively, found as a wapm package;
opencascade.js8 (65.8MB, 22.2M instructions), a WebAssembly port
of an open source C++ CAD library, found on npm and GitHub;
and finally the Clang compiler, itself compiled to WebAssembly
(46.7MB, 12.6M instructions), found on wapm and GitHub.
7https://github.com/pingcap/tidb
8https://github.com/donalffons/opencascade.js

0 50 100 150 200
Size (kilobytes)

0

250

500

750

1000

1250

N
um

be
r

of
 b

in
ar

ie
s

(a) Histogram of the lower 80%
of the sizes of the binaries.

25 27 29 211 213 215 217 219 221 223 225 227

Size (bytes)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ti

le
 o

f
bi

na
ri

es

(b) Cumulative distribution of
the binary sizes (in log2 scale).

Figure 4: Distribution of binary sizes.

Insight 2. Complex, real-world applications with millions of lines
of code are compiled to WebAssembly.

4.3 RQ1: Source Languages and Tools
Given WebAssembly’s goal of being a universal bytecode, we study
which languages are compiled to it in practice, and which toolchains
are used for to it.

Analysis. It is non-trivial to infer from a binary which source
language and compiler has produced it. We rely on several com-
plementary methods. First, we check the producers section, where
some toolchains explicitly encode the source language(s) a program
is compiled from. Second, our analysis searches for characteris-
tic function names that appear in the import section, the export

section, or the optional name section. For example, _ZdaPv is the
name-mangled delete operator of C++; or runtime.gostring is a
Go runtime library function. Overall, we identify characteristic
function names for C++, C, Rust, Go, AssemblyScript, Kotlin, and
FStar. Third, the analysis searches for characteristic strings among
all text sequences of >3 ASCII characters in the data section. For
example, being core types, Result::unwrap and Option::unwrap fre-
quently appear in error messages of the Rust standard library. We
identify characteristic strings for C++, Rust, Matlab, and COBOL.
Fourth, if none of the above work, we analyze sibling files of bina-
ries collected from code repositories and package managers. Sibling
file here means a file in the same directory that shares the file
name except for the extension. We take into account extensions for
C, C++, Rust, Go, AssemblyScript/TypeScript, the WebAssembly
text format (.wat/.wast), and several smaller languages. Finally, for
some source code repositories and packages with multiple uniden-
tified binaries, we manually inspect source code, build scripts, and
binaries. For each of the automated methods above, we manually
inspect binaries and the predictions to confirm that our heuristics
are precise. For binaries where multiple methods identify the source
language, we confirm that the predictions are consistent.

Results. Figure 5a shows the inferred source languages. We see
that almost two thirds (64.2%) of the binaries are compiled from C,
C++, or a combination of both. Given that these are memory-unsafe
languages, plagued with decades of vulnerabilities [41] and that
WebAssembly binaries are not automatically safe from exploita-
tion [18], this result is highly worrying.

4.3 RQ1: Source Languages and Tools
Given WebAssembly’s goal of being a universal bytecode, we study
which languages are compiled to it in practice, and which toolchains
are used for to it.

Analysis. It is non-trivial to infer from a binary which source
language and compiler has produced it. We rely on several com-
plementary methods. First, we check the producers section, where
some toolchains explicitly encode the source language(s) a program
is compiled from. Second, our analysis searches for characteris-
tic function names that appear in the import section, the export

section, or the optional name section. For example, _ZdaPv is the
name-mangled delete operator of C++; or runtime.gostring is a
Go runtime library function. Overall, we identify characteristic
function names for C++, C, Rust, Go, AssemblyScript, Kotlin, and
FStar. Third, the analysis searches for characteristic strings among
all text sequences of >3 ASCII characters in the data section. For
example, being core types, Result::unwrap and Option::unwrap fre-
quently appear in error messages of the Rust standard library. We
identify characteristic strings for C++, Rust, Matlab, and COBOL.
Fourth, if none of the above work, we analyze sibling files of bina-
ries collected from code repositories and package managers. Sibling
file here means a file in the same directory that shares the file
name except for the extension. We take into account extensions for
C, C++, Rust, Go, AssemblyScript/TypeScript, the WebAssembly
text format (.wat/.wast), and several smaller languages. Finally, for
some source code repositories and packages with multiple uniden-
tified binaries, we manually inspect source code, build scripts, and
binaries. For each of the automated methods above, we manually
inspect binaries and the predictions to confirm that our heuristics
are precise. For binaries where multiple methods identify the source
language, we confirm that the predictions are consistent.

Results. Figure 5a shows the inferred source languages. We see
that almost two thirds (64.2%) of the binaries are compiled from C,

8https://github.com/donalffons/opencascade.js

https://github.com/pingcap/tidb
https://github.com/donalffons/opencascade.js

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

0 50 100 150 200
Size (kilobytes)

0

250

500

750

1000

1250

N
um

be
r

of
 b

in
ar

ie
s

(a) Histogram of the lower 80%
of the sizes of the binaries.

25 27 29 211 213 215 217 219 221 223 225 227

Size (bytes)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ti

le
 o

f
bi

na
ri

es
(b) Cumulative distribution of
the binary sizes (in log2 scale).

Figure 4: Distribution of binary sizes.

C++, or a combination of both. Given that these are memory-unsafe
languages, plagued with decades of vulnerabilities [41] and that
WebAssembly binaries are not automatically safe from exploita-
tion [18], this result is highly worrying.

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

C++ (3,986)
47.1%

Rust (1,261)
14.9%

C/C++ (760)

9.0%

C (682)

8.1%

<100 instructions (283)

3.3%
AssemblyScript (256)

3%
Go (146)

1.7%
Other (324)

3.8%
Unknown (763)9.0%

(a) Source languages.

Names (5,495)

64.9%

Strings (5,156)60.9%

File Extension (304)
3.6%

Projects (245)
2.9%

Producers Section
 (1,710)

20.2%

(b) Analysis methods (multi-
ple can apply per binary).

Figure 5: Source languages and methods for inferring them.

Insight 3. Almost two-thirds of all collected binaries are com-
piled from memory-unsafe source languages. These results and
those in the next section call for techniques to analyze and ensure
WebAssembly’s binary security.

Rust comes in second place with 14.9% of all binaries, followed
by AssemblyScript (3%) and Go (1.7%) as source languages with
official WebAssembly support. Finally, there is a longer tail of other
languages, often used in single projects: Matlab9 (0.69%), FStar10
(0.33%), CHIP-811 (0.26%), several binaries compiled from toy lan-
guages, and even a single instance of COBOL. A small portion of
binaries (1.1%) is translated directly from theWebAssembly text for-
mat, i.e., likely to be written by hand. Finally, for 3.3% of all binaries
we could not assign a source language, but since they contain less
than 100 instructions, they are also likely to be written manually.

Insight 4. In addition to C/C++, various other languages are com-
piled to WebAssembly, including languages with garbage collection
and heavier runtimes (Go, Matlab). This result matches WebAssem-
bly’s goal of serving as a universal bytecode. It also means binary
analysis will become more important, since source code is not al-
ways available, and even if it is, implementing separate analyses
for many languages is impractical.

We also analyze the tools used to produce the binaries. For 20.2%
of the binaries, the producers section explicitly mentions them in
the processed-by field. 10.8% of all binaries explicitly mention being
produced by Clang. No binaries mention Emscripten because it does
not emit a producer section, unlike newer versions of Clang. These
results show that Emscripten is no longer the only way to compile
C and C++ toWebAssembly. Other tools that appear in the producer
section are rustc (9.5%), wasm-bindgen12 (7.9%), a JavaScript host-
code generator, and walrus (7.5%)13, a binary transformation library,
and the official Go compiler (0.4%). Since all compilers for Rust, C,
and C++ to WebAssembly are based on LLVM, we can also derive
that 79.1% of the binaries are produced with the help of LLVM.

Insight 5. Almost 80% of all binaries are compiled with the help
of the LLVM toolchain. This implies that security mitigations, such
as stack canaries, would have a large effect on the ecosystem if
implemented in this toolchain.

9https://github.com/Sable/matwably
10https://github.com/FStarLang/kremlin
11An 8-bit VM language from 1970s, https://github.com/pepyakin/emchipten
12https://github.com/rustwasm/wasm-bindgen
13https://github.com/rustwasm/walrus

Figure 5b shows which of our methods are most effective at
inferring the source language. 20.2% of the binaries contain a pro-
ducers section, fromwhich the source code language can be directly
obtained. Characteristic names and strings are also important in-
ference methods, since they apply to 64.9% and 60.9% of binaries,
respectively. Overall, our methods infer the source language for
91% (7,698) of the 8,461 unique binaries.

4.4 RQ2: Vulnerabilities Propagated from
Source Languages

Recent work shows that memory vulnerabilities in unsafe source
languages can propagate to WebAssembly binaries and may some-
times be exploited even more easily than for native binaries [18].
While this prior work evaluates the risks of such attacks on a small
set of 26 binaries, most of which are compiled C/C++ benchmarks,
it remains unclear to what extent propagated vulnerabilities may
affect real-world WebAssembly binaries.

We address this question by studying three important character-
istic of binaries that attackers can abuse: (i) uses of the unmanaged
stack, i.e., an unprotected representation of the function stack in
WebAssembly’s linear memory (Section 2), which attackers can use
for stack-based buffer overflows and stack overflows (Section 4.4.1);
(ii) unsafe memory allocators compiled into a binary, which at-
tackers can abuse as a memory write primitive (Section 4.4.2); and
(iii) accesses to potentially dangerous APIs imported from the host
environment (Section 4.4.3). For (i) [18] reports results on 26 bina-
ries only. We refine their static analysis and consider a 325× larger
dataset. For characteristics (ii) and (iii), this work is the first to sys-
tematically evaluate their prevalence in real-world WebAssembly
binaries. We study all binaries, irrespective of the source language,
because the problem of propagated vulnerabilities may affect all
languages with memory-unsafe behavior, in particular C, C++, but
also, e.g., Rust, as its unsafe keyword is commonly used [7] and can
cause memory-safety related vulnerabilities [46].

4.4.1 Usage of the Unmanaged Stack. The so-called “unmanaged
stack” is a region within the linear memory of a WebAssembly
program that holds, e.g., non-primitive data with function livetime.
This design is motivated by the fact that all non-scalar data and all
data of which an address is taken cannot be put in WebAssembly’s
locals or globals, but must instead reside in linear memory. Given
that buffer overflows on the unmanaged stack can overwrite across
stack frames and even into supposedly “constant” data, this makes
the unmanaged stack a more dangerous exploitation target than
even in native programs [18]. For this reason, we evaluate how
many binaries use it in practice.

Analysis. To analyze the usage of the unmanaged stack, our
static analysis performs two steps. First, it tries to identify the stack
pointer to determine whether a binary uses an unmanaged stack at
all. Out of all global variables, the analysis selects the one that
• has type i32, i.e., the type of all pointers,
• is declared mutable, to exclude constants like STACK_MAX,
• is the most read and written global, as determined by the number
of global.get × global.set instructions14, and

14The product of the counts prefers globals which are similarly often read and written.
This is true for the stack pointer, but not for other frequently accessed pointers.

Rust comes in second place with 14.9% of all binaries, followed
by AssemblyScript (3%) and Go (1.7%) as source languages with
official WebAssembly support. Finally, there is a longer tail of other
languages, often used in single projects: Matlab9 (0.69%), FStar10
(0.33%), CHIP-811 (0.26%), several binaries compiled from toy lan-
guages, and even a single instance of COBOL. A small portion of
binaries (1.1%) is translated directly from theWebAssembly text for-
mat, i.e., likely to be written by hand. Finally, for 3.3% of all binaries
we could not assign a source language, but since they contain less
than 100 instructions, they are also likely to be written manually.

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

C++ (3,986)
47.1%

Rust (1,261)
14.9%

C/C++ (760)

9.0%

C (682)

8.1%

<100 instructions (283)

3.3%
AssemblyScript (256)

3%
Go (146)

1.7%
Other (324)

3.8%
Unknown (763)9.0%

(a) Source languages.

Names (5,495)

64.9%

Strings (5,156)60.9%

File Extension (304)
3.6%

Projects (245)
2.9%

Producers Section
 (1,710)

20.2%

(b) Analysis methods (multi-
ple can apply per binary).

Figure 5: Source languages and methods for inferring them.

Insight 3. Almost two-thirds of all collected binaries are com-
piled from memory-unsafe source languages. These results and
those in the next section call for techniques to analyze and ensure
WebAssembly’s binary security.

Rust comes in second place with 14.9% of all binaries, followed
by AssemblyScript (3%) and Go (1.7%) as source languages with
official WebAssembly support. Finally, there is a longer tail of other
languages, often used in single projects: Matlab9 (0.69%), FStar10
(0.33%), CHIP-811 (0.26%), several binaries compiled from toy lan-
guages, and even a single instance of COBOL. A small portion of
binaries (1.1%) is translated directly from theWebAssembly text for-
mat, i.e., likely to be written by hand. Finally, for 3.3% of all binaries
we could not assign a source language, but since they contain less
than 100 instructions, they are also likely to be written manually.

Insight 4. In addition to C/C++, various other languages are com-
piled to WebAssembly, including languages with garbage collection
and heavier runtimes (Go, Matlab). This result matches WebAssem-
bly’s goal of serving as a universal bytecode. It also means binary
analysis will become more important, since source code is not al-
ways available, and even if it is, implementing separate analyses
for many languages is impractical.

We also analyze the tools used to produce the binaries. For 20.2%
of the binaries, the producers section explicitly mentions them in
the processed-by field. 10.8% of all binaries explicitly mention being
produced by Clang. No binaries mention Emscripten because it does
not emit a producer section, unlike newer versions of Clang. These
results show that Emscripten is no longer the only way to compile
C and C++ toWebAssembly. Other tools that appear in the producer
section are rustc (9.5%), wasm-bindgen12 (7.9%), a JavaScript host-
code generator, and walrus (7.5%)13, a binary transformation library,
and the official Go compiler (0.4%). Since all compilers for Rust, C,
and C++ to WebAssembly are based on LLVM, we can also derive
that 79.1% of the binaries are produced with the help of LLVM.

Insight 5. Almost 80% of all binaries are compiled with the help
of the LLVM toolchain. This implies that security mitigations, such
as stack canaries, would have a large effect on the ecosystem if
implemented in this toolchain.

9https://github.com/Sable/matwably
10https://github.com/FStarLang/kremlin
11An 8-bit VM language from 1970s, https://github.com/pepyakin/emchipten
12https://github.com/rustwasm/wasm-bindgen
13https://github.com/rustwasm/walrus

Figure 5b shows which of our methods are most effective at
inferring the source language. 20.2% of the binaries contain a pro-
ducers section, fromwhich the source code language can be directly
obtained. Characteristic names and strings are also important in-
ference methods, since they apply to 64.9% and 60.9% of binaries,
respectively. Overall, our methods infer the source language for
91% (7,698) of the 8,461 unique binaries.

4.4 RQ2: Vulnerabilities Propagated from
Source Languages

Recent work shows that memory vulnerabilities in unsafe source
languages can propagate to WebAssembly binaries and may some-
times be exploited even more easily than for native binaries [18].
While this prior work evaluates the risks of such attacks on a small
set of 26 binaries, most of which are compiled C/C++ benchmarks,
it remains unclear to what extent propagated vulnerabilities may
affect real-world WebAssembly binaries.

We address this question by studying three important character-
istic of binaries that attackers can abuse: (i) uses of the unmanaged
stack, i.e., an unprotected representation of the function stack in
WebAssembly’s linear memory (Section 2), which attackers can use
for stack-based buffer overflows and stack overflows (Section 4.4.1);
(ii) unsafe memory allocators compiled into a binary, which at-
tackers can abuse as a memory write primitive (Section 4.4.2); and
(iii) accesses to potentially dangerous APIs imported from the host
environment (Section 4.4.3). For (i) [18] reports results on 26 bina-
ries only. We refine their static analysis and consider a 325× larger
dataset. For characteristics (ii) and (iii), this work is the first to sys-
tematically evaluate their prevalence in real-world WebAssembly
binaries. We study all binaries, irrespective of the source language,
because the problem of propagated vulnerabilities may affect all
languages with memory-unsafe behavior, in particular C, C++, but
also, e.g., Rust, as its unsafe keyword is commonly used [7] and can
cause memory-safety related vulnerabilities [46].

4.4.1 Usage of the Unmanaged Stack. The so-called “unmanaged
stack” is a region within the linear memory of a WebAssembly
program that holds, e.g., non-primitive data with function livetime.
This design is motivated by the fact that all non-scalar data and all
data of which an address is taken cannot be put in WebAssembly’s
locals or globals, but must instead reside in linear memory. Given
that buffer overflows on the unmanaged stack can overwrite across
stack frames and even into supposedly “constant” data, this makes
the unmanaged stack a more dangerous exploitation target than
even in native programs [18]. For this reason, we evaluate how
many binaries use it in practice.

Analysis. To analyze the usage of the unmanaged stack, our
static analysis performs two steps. First, it tries to identify the stack
pointer to determine whether a binary uses an unmanaged stack at
all. Out of all global variables, the analysis selects the one that
• has type i32, i.e., the type of all pointers,
• is declared mutable, to exclude constants like STACK_MAX,
• is the most read and written global, as determined by the number
of global.get × global.set instructions14, and

14The product of the counts prefers globals which are similarly often read and written.
This is true for the stack pointer, but not for other frequently accessed pointers.

We also analyze the tools used to produce the binaries. For 20.2%
of the binaries, the producers section explicitly mentions them in
the processed-by field. 10.8% of all binaries explicitly mention being
produced by Clang. No binaries mention Emscripten because it does
not emit a producer section, unlike newer versions of Clang. These
results show that Emscripten is no longer the only way to compile
C and C++ toWebAssembly. Other tools that appear in the producer
section are rustc (9.5%), wasm-bindgen12 (7.9%), a JavaScript host-
code generator, and walrus (7.5%)13, a binary transformation library,
and the official Go compiler (0.4%). Since all compilers for Rust, C,
and C++ to WebAssembly are based on LLVM, we can also derive
that 79.1% of the binaries are produced with the help of LLVM.

9https://github.com/Sable/matwably
10https://github.com/FStarLang/kremlin
11An 8-bit VM language from 1970s, https://github.com/pepyakin/emchipten
12https://github.com/rustwasm/wasm-bindgen
13https://github.com/rustwasm/walrus

C++ (3,986)
47.1%

Rust (1,261)
14.9%

C/C++ (760)

9.0%

C (682)

8.1%

<100 instructions (283)

3.3%
AssemblyScript (256)

3%
Go (146)

1.7%
Other (324)

3.8%
Unknown (763)9.0%

(a) Source languages.

Names (5,495)

64.9%

Strings (5,156)60.9%

File Extension (304)
3.6%

Projects (245)
2.9%

Producers Section
 (1,710)

20.2%

(b) Analysis methods (multi-
ple can apply per binary).

Figure 5: Source languages and methods for inferring them.

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

C++ (3,986)
47.1%

Rust (1,261)
14.9%

C/C++ (760)

9.0%

C (682)

8.1%

<100 instructions (283)

3.3%
AssemblyScript (256)

3%
Go (146)

1.7%
Other (324)

3.8%
Unknown (763)9.0%

(a) Source languages.

Names (5,495)

64.9%

Strings (5,156)60.9%

File Extension (304)
3.6%

Projects (245)
2.9%

Producers Section
 (1,710)

20.2%

(b) Analysis methods (multi-
ple can apply per binary).

Figure 5: Source languages and methods for inferring them.

Insight 3. Almost two-thirds of all collected binaries are com-
piled from memory-unsafe source languages. These results and
those in the next section call for techniques to analyze and ensure
WebAssembly’s binary security.

Rust comes in second place with 14.9% of all binaries, followed
by AssemblyScript (3%) and Go (1.7%) as source languages with
official WebAssembly support. Finally, there is a longer tail of other
languages, often used in single projects: Matlab9 (0.69%), FStar10
(0.33%), CHIP-811 (0.26%), several binaries compiled from toy lan-
guages, and even a single instance of COBOL. A small portion of
binaries (1.1%) is translated directly from theWebAssembly text for-
mat, i.e., likely to be written by hand. Finally, for 3.3% of all binaries
we could not assign a source language, but since they contain less
than 100 instructions, they are also likely to be written manually.

Insight 4. In addition to C/C++, various other languages are com-
piled to WebAssembly, including languages with garbage collection
and heavier runtimes (Go, Matlab). This result matches WebAssem-
bly’s goal of serving as a universal bytecode. It also means binary
analysis will become more important, since source code is not al-
ways available, and even if it is, implementing separate analyses
for many languages is impractical.

We also analyze the tools used to produce the binaries. For 20.2%
of the binaries, the producers section explicitly mentions them in
the processed-by field. 10.8% of all binaries explicitly mention being
produced by Clang. No binaries mention Emscripten because it does
not emit a producer section, unlike newer versions of Clang. These
results show that Emscripten is no longer the only way to compile
C and C++ toWebAssembly. Other tools that appear in the producer
section are rustc (9.5%), wasm-bindgen12 (7.9%), a JavaScript host-
code generator, and walrus (7.5%)13, a binary transformation library,
and the official Go compiler (0.4%). Since all compilers for Rust, C,
and C++ to WebAssembly are based on LLVM, we can also derive
that 79.1% of the binaries are produced with the help of LLVM.

Insight 5. Almost 80% of all binaries are compiled with the help
of the LLVM toolchain. This implies that security mitigations, such
as stack canaries, would have a large effect on the ecosystem if
implemented in this toolchain.

9https://github.com/Sable/matwably
10https://github.com/FStarLang/kremlin
11An 8-bit VM language from 1970s, https://github.com/pepyakin/emchipten
12https://github.com/rustwasm/wasm-bindgen
13https://github.com/rustwasm/walrus

Figure 5b shows which of our methods are most effective at
inferring the source language. 20.2% of the binaries contain a pro-
ducers section, fromwhich the source code language can be directly
obtained. Characteristic names and strings are also important in-
ference methods, since they apply to 64.9% and 60.9% of binaries,
respectively. Overall, our methods infer the source language for
91% (7,698) of the 8,461 unique binaries.

4.4 RQ2: Vulnerabilities Propagated from
Source Languages

Recent work shows that memory vulnerabilities in unsafe source
languages can propagate to WebAssembly binaries and may some-
times be exploited even more easily than for native binaries [18].
While this prior work evaluates the risks of such attacks on a small
set of 26 binaries, most of which are compiled C/C++ benchmarks,
it remains unclear to what extent propagated vulnerabilities may
affect real-world WebAssembly binaries.

We address this question by studying three important character-
istic of binaries that attackers can abuse: (i) uses of the unmanaged
stack, i.e., an unprotected representation of the function stack in
WebAssembly’s linear memory (Section 2), which attackers can use
for stack-based buffer overflows and stack overflows (Section 4.4.1);
(ii) unsafe memory allocators compiled into a binary, which at-
tackers can abuse as a memory write primitive (Section 4.4.2); and
(iii) accesses to potentially dangerous APIs imported from the host
environment (Section 4.4.3). For (i) [18] reports results on 26 bina-
ries only. We refine their static analysis and consider a 325× larger
dataset. For characteristics (ii) and (iii), this work is the first to sys-
tematically evaluate their prevalence in real-world WebAssembly
binaries. We study all binaries, irrespective of the source language,
because the problem of propagated vulnerabilities may affect all
languages with memory-unsafe behavior, in particular C, C++, but
also, e.g., Rust, as its unsafe keyword is commonly used [7] and can
cause memory-safety related vulnerabilities [46].

4.4.1 Usage of the Unmanaged Stack. The so-called “unmanaged
stack” is a region within the linear memory of a WebAssembly
program that holds, e.g., non-primitive data with function livetime.
This design is motivated by the fact that all non-scalar data and all
data of which an address is taken cannot be put in WebAssembly’s
locals or globals, but must instead reside in linear memory. Given
that buffer overflows on the unmanaged stack can overwrite across
stack frames and even into supposedly “constant” data, this makes
the unmanaged stack a more dangerous exploitation target than
even in native programs [18]. For this reason, we evaluate how
many binaries use it in practice.

Analysis. To analyze the usage of the unmanaged stack, our
static analysis performs two steps. First, it tries to identify the stack
pointer to determine whether a binary uses an unmanaged stack at
all. Out of all global variables, the analysis selects the one that
• has type i32, i.e., the type of all pointers,
• is declared mutable, to exclude constants like STACK_MAX,
• is the most read and written global, as determined by the number
of global.get × global.set instructions14, and

14The product of the counts prefers globals which are similarly often read and written.
This is true for the stack pointer, but not for other frequently accessed pointers.

Figure 5b shows which of our methods are most effective at
inferring the source language. 20.2% of the binaries contain a pro-
ducers section, fromwhich the source code language can be directly
obtained. Characteristic names and strings are also important in-
ference methods, since they apply to 64.9% and 60.9% of binaries,
respectively. Overall, our methods infer the source language for
91% (7,698) of the 8,461 unique binaries.

4.4 RQ2: Vulnerabilities Propagated from
Source Languages

Recent work shows that memory vulnerabilities in unsafe source
languages can propagate to WebAssembly binaries and may some-
times be exploited even more easily than for native binaries [18].
While this prior work evaluates the risks of such attacks on a small
set of 26 binaries, most of which are compiled C/C++ benchmarks,
it remains unclear to what extent propagated vulnerabilities may
affect real-world WebAssembly binaries.

We address this question by studying three important character-
istic of binaries that attackers can abuse: (i) uses of the unmanaged
stack, i.e., an unprotected representation of the function stack in
WebAssembly’s linear memory (Section 2), which attackers can use
for stack-based buffer overflows and stack overflows (Section 4.4.1);
(ii) unsafe memory allocators compiled into a binary, which at-
tackers can abuse as a memory write primitive (Section 4.4.2); and
(iii) accesses to potentially dangerous APIs imported from the host
environment (Section 4.4.3). For (i) [18] reports results on 26 bina-
ries only. We refine their static analysis and consider a 325× larger
dataset. For characteristics (ii) and (iii), this work is the first to sys-
tematically evaluate their prevalence in real-world WebAssembly
binaries. We study all binaries, irrespective of the source language,
because the problem of propagated vulnerabilities may affect all
languages with memory-unsafe behavior, in particular C, C++, but
also, e.g., Rust, as its unsafe keyword is commonly used [7] and can
cause memory-safety related vulnerabilities [46].
4.4.1 Usage of the Unmanaged Stack. The so-called “unmanaged
stack” is a region within the linear memory of a WebAssembly
program that holds, e.g., non-primitive data with function livetime.
This design is motivated by the fact that all non-scalar data and all
data of which an address is taken cannot be put in WebAssembly’s
locals or globals, but must instead reside in linear memory. Given

https://github.com/Sable/matwably
https://github.com/FStarLang/kremlin
https://github.com/pepyakin/emchipten
https://github.com/rustwasm/wasm-bindgen
https://github.com/rustwasm/walrus

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

Stack pointer:
global 0 (4,216)

49.8%

Stack pointer: others (1,284)

15.2% No memory (167)
2.0%

No mutable
i32 global (1,989)

23.5%

Not enough accesses (805)

9.5%

(a) Proportion of binaries
with identified stack pointer,
and if not why.

0% 20% 40% 60% 80% 100%
Percentile of binaries

0%

20%

40%

60%

80%

100%

Fu
nc

ti
on

s
th

at
 a

cc
es

s
th

e
un

m
an

ag
ed

 s
ta

ck
(b) Cumulative distribution of pro-
portion of functions in a binary
that use the unmanaged stack.

Figure 6: Unmanaged stack usage in binaries.

that buffer overflows on the unmanaged stack can overwrite across
stack frames and even into supposedly “constant” data, this makes
the unmanaged stack a more dangerous exploitation target than
even in native programs [18]. For this reason, we evaluate how
many binaries use it in practice.

Analysis. To analyze the usage of the unmanaged stack, our
static analysis performs two steps. First, it tries to identify the stack
pointer to determine whether a binary uses an unmanaged stack at
all. Out of all global variables, the analysis selects the one that

• has type i32, i.e., the type of all pointers,
• is declared mutable, to exclude constants like STACK_MAX,
• is the most read and written global, as determined by the
number of global.get × global.set instructions14, and

• has at least three reads and at least three writes, to avoid
false positives in small binaries.

Wemanually validate that these heuristics identify the stack pointer
reliably on randomly sampled binaries. If the analysis cannot iden-
tify a stack pointer, it conservatively assumes that the binary does
not use an unmanaged stack. Second, once the stack pointer is
identified, the analysis counts the number of functions in the bi-
nary that access the stack pointer somewhere in their body. Our
implementation builds upon the prototype analysis provided by
Lehmann et al.15, but uses a different WebAssembly parser to also
handle language extensions and makes the analysis robust enough
to run on thousands of real-world binaries.

Results. Figure 6a shows that almost two thirds (65%) of all bina-
ries use the unmanaged stack. While most of them use the global
with index 0 as their stack pointer, our heuristics to identify the
stack pointer are important, since 15.2% of all binaries use another
global variable. For 2% of the binaries, the analysis can clearly deter-
mine that they have no unmanaged stack in linear memory, simply
because there is no linear memory at all. For 23.5% of the binaries,
there is a linear memory section, but no mutable i32 global that
could be a stack pointer. Finally, 9.5% of all binaries have at least
one candidate mutable global pointer, but it is not accessed often
enough for our analysis to consider it the stack pointer. Interest-
ingly, AssemblyScript programs are in the last category, since its
runtime seems to not support stack allocation.

To better understand how much a binary uses the unmanaged
stack, Figure 6b shows how many of the functions in a binary
access the stack pointer at least once. Consistent with Figure 6a,
14The product of the counts prefers globals which are similarly often read and written.
This is true for the stack pointer, but not for other frequently accessed pointers.
15https://github.com/sola-st/wasm-binary-security

dlmalloc (1,430) 16.9%

Go malloc (139)
1.6%

AssemblyScript alloc (114)

1.3% eosio malloc (2,766)

32.7%

eosio simple_malloc (368)

4.3%

wee_alloc (62)0.7%
Boehm GC (61)0.7%

emmalloc (11)
Others (9)

No memory (167)

2.0%

No loads/stores (155)

1.8%

Unknown (1,994)

23.6%Unknown,
Emscripten (1,189)

14.0%

Figure 7: Allocators in binaries, multiple can apply.

in 35% of all binaries no function uses the stack pointer because
none is present. In the median binary, already 33% of all functions
use the stack pointer, and in some binaries almost every function
uses the unmanaged stack. On average across all binaries with an
unmanaged stack, 44% of their functions make use of it.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

Stack pointer:
global 0 (4,216)

49.8%

Stack pointer: others (1,284)

15.2% No memory (167)
2.0%

No mutable
i32 global (1,989)

23.5%

Not enough accesses (805)

9.5%

(a) Proportion of binaries
with identified stack pointer,
and if not why.

0% 20% 40% 60% 80% 100%
Percentile of binaries

0%

20%

40%

60%

80%

100%

Fu
nc

ti
on

s
th

at
 a

cc
es

s
th

e
un

m
an

ag
ed

 s
ta

ck

(b) Cumulative distribution of pro-
portion of functions in a binary
that use the unmanaged stack.

Figure 6: Unmanaged stack usage in binaries.

• has at least three reads and at least three writes, to avoid false
positives in small binaries.

Wemanually validate that these heuristics identify the stack pointer
reliably on randomly sampled binaries. If the analysis cannot iden-
tify a stack pointer, it conservatively assumes that the binary does
not use an unmanaged stack. Second, once the stack pointer is
identified, the analysis counts the number of functions in the bi-
nary that access the stack pointer somewhere in their body. Our
implementation builds upon the prototype analysis provided by
Lehmann et al.15, but uses a different WebAssembly parser to also
handle language extensions and makes the analysis robust enough
to run on thousands of real-world binaries.

Results. Figure 6a shows that almost two thirds (65%) of all bina-
ries use the unmanaged stack. While most of them use the global
with index 0 as their stack pointer, our heuristics to identify the
stack pointer are important, since 15.2% of all binaries use another
global variable. For 2% of the binaries, the analysis can clearly deter-
mine that they have no unmanaged stack in linear memory, simply
because there is no linear memory at all. For 23.5% of the binaries,
there is a linear memory section, but no mutable i32 global that
could be a stack pointer. Finally, 9.5% of all binaries have at least
one candidate mutable global pointer, but it is not accessed often
enough for our analysis to consider it the stack pointer. Interest-
ingly, AssemblyScript programs are in the last category, since its
runtime seems to not support stack allocation.

To better understand how much a binary uses the unmanaged
stack, Figure 6b shows how many of the functions in a binary
access the stack pointer at least once. Consistent with Figure 6a,
in 35% of all binaries no function uses the stack pointer because
none is present. In the median binary, already 33% of all functions
use the stack pointer, and in some binaries almost every function
uses the unmanaged stack. On average across all binaries with an
unmanaged stack, 44% of their functions make use of it.

Insight 6. Many binaries (65%) and functions in those binaries
(44%) use the unmanaged stack, which attackers may abuse for
runtime exploitation. This result extends earlier findings [18] to a
much larger and more diverse set of real-world binaries.

4.4.2 Statically Linked Allocators. WebAssembly’s memory orga-
nization is very low-level. Besides the single linear memory section,
which can be expanded at runtime with the memory.grow instruc-
tion, no help with allocating memory is provided by the language.
Subdividing the linear memory, e.g., to avoid fragmentation and
15https://github.com/sola-st/wasm-binary-security

dlmalloc (1,430) 16.9%

Go malloc (139)
1.6%

AssemblyScript alloc (114)

1.3% eosio malloc (2,766)

32.7%

eosio simple_malloc (368)

4.3%

wee_alloc (62)0.7%
Boehm GC (61)0.7%

emmalloc (11)
Others (9)

No memory (167)

2.0%

No loads/stores (155)

1.8%

Unknown (1,994)

23.6%Unknown,
Emscripten (1,189)

14.0%

Figure 7: Allocators in binaries, multiple can apply.

to reuse space of deallocated objects, needs to be handled by an
allocator that is statically linked into the binary. Especially for bi-
naries on the web and for smart contract platforms, code size is an
important consideration, so developers can choose a lightweight
allocator instead of the default allocator provided by the compiler.
Prior work has shown [18] that those smaller allocators can lack
important mitigations against heap metadata corruption and yield
powerful arbitrary write primitives for an attacker. However, it
remains unclear what allocators developers use in practice.

Analysis. To identify allocators in a binary, we rely on similar
heuristics as for source language detection (Section 4.3). That is, we
first identify allocators by characteristic function names in binaries,
if those are available. Then, we inspect frequent strings in the data

section of binaries, e.g., for error messages of certain allocators.
Results. Figure 7 shows our results, grouped into three categories.

In blue, we mark default allocators provided by programming lan-
guages and compilers, in different shades of red we mark other al-
locators that we identified, and in gray when we could not identify
an allocator. In terms of default allocators, we see that 16.9% of all
binaries use dlmalloc, the default allocator provided by Emscripten,
Clang, and the Rust compiler when targetingWebAssembly. Go and
AssemblyScript allocators are present roughly in the proportion of
their respective languages.

Among the non-default allocators, two particular ones domi-
nate, being in 32.7% and 4.3% of our binaries. They are both from
EOSIO, a smart contract platform that uses WebAssembly as its
bytecode. Those contracts can be written in C++ and compiled with
Emscripten. However, most of them are not using Emscripten’s
default allocator. While we did not perform an in-depth security
analysis of EOSIO malloc and simple_mallocwe can attest that both
are considerably shorter in terms of code and do not feature any
assertions that would guard against metadata corruption. In our
dataset, we also find wee_alloc (62 binaries) and emmalloc (11 bi-
naries), two small allocators for Rust and Emscripten respectively,
that were already found to be vulnerable against heap metadata
corruption attacks [18]. Other interesting custom allocators are
Boehm GC (a mark-and-sweep garbage collector) and gperftools,
in several binaries collected from Google domains.

Insight 7. WebAssembly binaries come with a variety of memory
allocators, including many custom allocators (38.6%), increasing
the risk to include vulnerable allocators. If code size is the motiva-
tion to use custom allocators, a more secure alternative could be a
memory allocation or garbage collection API provided by the host
environment [33].

4.4.3 Imports of Security-Critical APIs from Host Environment. To
exploit a WebAssembly binary, an attack proceeds in two steps. The

4.4.2 Statically Linked Allocators. WebAssembly’s memory orga-
nization is very low-level. Besides the single linear memory section,
which can be expanded at runtime with the memory.grow instruc-
tion, no help with allocating memory is provided by the language.
Subdividing the linear memory, e.g., to avoid fragmentation and
to reuse space of deallocated objects, needs to be handled by an
allocator that is statically linked into the binary. Especially for bi-
naries on the web and for smart contract platforms, code size is an
important consideration, so developers can choose a lightweight
allocator instead of the default allocator provided by the compiler.
Prior work has shown [18] that those smaller allocators can lack
important mitigations against heap metadata corruption and yield
powerful arbitrary write primitives for an attacker. However, it
remains unclear what allocators developers use in practice.

Analysis. To identify allocators in a binary, we rely on similar
heuristics as for source language detection (Section 4.3). That is, we
first identify allocators by characteristic function names in binaries,
if those are available. Then, we inspect frequent strings in the data

section of binaries, e.g., for error messages of certain allocators.
Results. Figure 7 shows our results, grouped into three categories.

In blue, we mark default allocators provided by programming lan-
guages and compilers, in different shades of red we mark other al-
locators that we identified, and in gray when we could not identify
an allocator. In terms of default allocators, we see that 16.9% of all
binaries use dlmalloc, the default allocator provided by Emscripten,
Clang, and the Rust compiler when targetingWebAssembly. Go and
AssemblyScript allocators are present roughly in the proportion of
their respective languages.

Among the non-default allocators, two particular ones domi-
nate, being in 32.7% and 4.3% of our binaries. They are both from
EOSIO, a smart contract platform that uses WebAssembly as its
bytecode. Those contracts can be written in C++ and compiled with
Emscripten. However, most of them are not using Emscripten’s
default allocator. While we did not perform an in-depth security
analysis of EOSIO malloc and simple_mallocwe can attest that both
are considerably shorter in terms of code and do not feature any

https://github.com/sola-st/wasm-binary-security

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

assertions that would guard against metadata corruption. In our
dataset, we also find wee_alloc (62 binaries) and emmalloc (11 bi-
naries), two small allocators for Rust and Emscripten respectively,
that were already found to be vulnerable against heap metadata
corruption attacks [18]. Other interesting custom allocators are
Boehm GC (a mark-and-sweep garbage collector) and gperftools,
in several binaries collected from Google domains.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

Stack pointer:
global 0 (4,216)

49.8%

Stack pointer: others (1,284)

15.2% No memory (167)
2.0%

No mutable
i32 global (1,989)

23.5%

Not enough accesses (805)

9.5%

(a) Proportion of binaries
with identified stack pointer,
and if not why.

0% 20% 40% 60% 80% 100%
Percentile of binaries

0%

20%

40%

60%

80%

100%

Fu
nc

ti
on

s
th

at
 a

cc
es

s
th

e
un

m
an

ag
ed

 s
ta

ck

(b) Cumulative distribution of pro-
portion of functions in a binary
that use the unmanaged stack.

Figure 6: Unmanaged stack usage in binaries.

• has at least three reads and at least three writes, to avoid false
positives in small binaries.

Wemanually validate that these heuristics identify the stack pointer
reliably on randomly sampled binaries. If the analysis cannot iden-
tify a stack pointer, it conservatively assumes that the binary does
not use an unmanaged stack. Second, once the stack pointer is
identified, the analysis counts the number of functions in the bi-
nary that access the stack pointer somewhere in their body. Our
implementation builds upon the prototype analysis provided by
Lehmann et al.15, but uses a different WebAssembly parser to also
handle language extensions and makes the analysis robust enough
to run on thousands of real-world binaries.

Results. Figure 6a shows that almost two thirds (65%) of all bina-
ries use the unmanaged stack. While most of them use the global
with index 0 as their stack pointer, our heuristics to identify the
stack pointer are important, since 15.2% of all binaries use another
global variable. For 2% of the binaries, the analysis can clearly deter-
mine that they have no unmanaged stack in linear memory, simply
because there is no linear memory at all. For 23.5% of the binaries,
there is a linear memory section, but no mutable i32 global that
could be a stack pointer. Finally, 9.5% of all binaries have at least
one candidate mutable global pointer, but it is not accessed often
enough for our analysis to consider it the stack pointer. Interest-
ingly, AssemblyScript programs are in the last category, since its
runtime seems to not support stack allocation.

To better understand how much a binary uses the unmanaged
stack, Figure 6b shows how many of the functions in a binary
access the stack pointer at least once. Consistent with Figure 6a,
in 35% of all binaries no function uses the stack pointer because
none is present. In the median binary, already 33% of all functions
use the stack pointer, and in some binaries almost every function
uses the unmanaged stack. On average across all binaries with an
unmanaged stack, 44% of their functions make use of it.

Insight 6. Many binaries (65%) and functions in those binaries
(44%) use the unmanaged stack, which attackers may abuse for
runtime exploitation. This result extends earlier findings [18] to a
much larger and more diverse set of real-world binaries.

4.4.2 Statically Linked Allocators. WebAssembly’s memory orga-
nization is very low-level. Besides the single linear memory section,
which can be expanded at runtime with the memory.grow instruc-
tion, no help with allocating memory is provided by the language.
Subdividing the linear memory, e.g., to avoid fragmentation and
15https://github.com/sola-st/wasm-binary-security

dlmalloc (1,430) 16.9%

Go malloc (139)
1.6%

AssemblyScript alloc (114)

1.3% eosio malloc (2,766)

32.7%

eosio simple_malloc (368)

4.3%

wee_alloc (62)0.7%
Boehm GC (61)0.7%

emmalloc (11)
Others (9)

No memory (167)

2.0%

No loads/stores (155)

1.8%

Unknown (1,994)

23.6%Unknown,
Emscripten (1,189)

14.0%

Figure 7: Allocators in binaries, multiple can apply.

to reuse space of deallocated objects, needs to be handled by an
allocator that is statically linked into the binary. Especially for bi-
naries on the web and for smart contract platforms, code size is an
important consideration, so developers can choose a lightweight
allocator instead of the default allocator provided by the compiler.
Prior work has shown [18] that those smaller allocators can lack
important mitigations against heap metadata corruption and yield
powerful arbitrary write primitives for an attacker. However, it
remains unclear what allocators developers use in practice.

Analysis. To identify allocators in a binary, we rely on similar
heuristics as for source language detection (Section 4.3). That is, we
first identify allocators by characteristic function names in binaries,
if those are available. Then, we inspect frequent strings in the data

section of binaries, e.g., for error messages of certain allocators.
Results. Figure 7 shows our results, grouped into three categories.

In blue, we mark default allocators provided by programming lan-
guages and compilers, in different shades of red we mark other al-
locators that we identified, and in gray when we could not identify
an allocator. In terms of default allocators, we see that 16.9% of all
binaries use dlmalloc, the default allocator provided by Emscripten,
Clang, and the Rust compiler when targetingWebAssembly. Go and
AssemblyScript allocators are present roughly in the proportion of
their respective languages.

Among the non-default allocators, two particular ones domi-
nate, being in 32.7% and 4.3% of our binaries. They are both from
EOSIO, a smart contract platform that uses WebAssembly as its
bytecode. Those contracts can be written in C++ and compiled with
Emscripten. However, most of them are not using Emscripten’s
default allocator. While we did not perform an in-depth security
analysis of EOSIO malloc and simple_mallocwe can attest that both
are considerably shorter in terms of code and do not feature any
assertions that would guard against metadata corruption. In our
dataset, we also find wee_alloc (62 binaries) and emmalloc (11 bi-
naries), two small allocators for Rust and Emscripten respectively,
that were already found to be vulnerable against heap metadata
corruption attacks [18]. Other interesting custom allocators are
Boehm GC (a mark-and-sweep garbage collector) and gperftools,
in several binaries collected from Google domains.

Insight 7. WebAssembly binaries come with a variety of memory
allocators, including many custom allocators (38.6%), increasing
the risk to include vulnerable allocators. If code size is the motiva-
tion to use custom allocators, a more secure alternative could be a
memory allocation or garbage collection API provided by the host
environment [33].

4.4.3 Imports of Security-Critical APIs from Host Environment. To
exploit a WebAssembly binary, an attack proceeds in two steps. The
4.4.3 Imports of Security-Critical APIs from Host Environment. To
exploit a WebAssembly binary, an attack proceeds in two steps. The
first step is compromising the state or behavior of theWebAssembly
binary itself, e.g., by exploiting an unsafe allocator (Section 4.4.2)
or a buffer overflow on the unmanaged stack (Section 4.4.1). The
second step is actually performing the malicious action to the un-
derlying system. The only way to do so, assuming VM implementa-
tions are bug-free and host security16 is perfect (which they are not
[1, 36]), is to call functions imported into the WebAssembly binary
from the host environment. For example, an attacker could pass an
injected string on the unmanaged stack to an imported function,
e.g., JavaScript’s eval. To estimate how oftenWebAssembly binaries
use such security-critical host APIs, we thus analyze their imports.

Analysis. We identify imported security-critical APIs based on
their import name in the WebAssembly binary. Going by name
(instead of implementation) is necessary because, (1) the imple-
mentation of an imported function is supplied by the host only
at instantiation-time, so it is not available when given only the
binary; and (2) there are many host environments, not all of which
are using JavaScript. WASI for example, defines imports that can
be implemented by different standalone WebAssembly VMs in na-
tive code. We thus identify import names for which the host im-
plementation is likely a security-critical function. E.g., the import
emscripten_run_script inWebAssembly binaries is typically bound
to Emscripten-generated JavaScript code that calls eval. We match
imports against 18 patterns in five categories known to be poten-
tially security-critical APIs:

• Code execution. Imports like eval, exec, or emscripten_run_script.
• Network access. Imports containing XHR, request, http, or

fetch.
• File I/O. Imports containing file, fd, or path.
• DOM interaction. Imports containing document, html, body, or

element could manipulate the DOM, which can lead to XSS.
• Dynamic linking. dlopen, dlsym, and dlclose allow loading
additional code at runtime, which can lead to code injection.

To avoid spurious matches, especially for short patterns like fd,
we tokenize import names based on camel-case and non-alphabet
characters, and then check for a pattern to occur verbatim in the
token sequence. E.g., fd_write matches our file I/O category, but
16Host security: isolation of WebAssembly execution from the underlying host, e.g.,
ensuring that aWebAssembly program can write only to its designated memory region.

Table 3: Importsmatching potentially security-critical APIs.

Category Patterns
Matching

Imports Binaries %

Code execution eval, exec, execve 383 160 1.9%
emscripten_run_script

Network access xhr, request, http, fetch 944 172 2.0%
File I/O file, fd, path 7,532 1,610 19.0%
DOM interaction document, html, body, element 1,720 212 2.5%
Dynamic linking dlopen, dlsym, dlclose 352 138 1.6%

At least one 10,468 1,797 21.2%

bufdelete does not. We manually inspect matches to ensure they
are plausible and remove benign matches otherwise.

Results. Table 3 shows the results of our name-based import
analysis. The first two columns show the category and patterns
we match import names against. In the third column, we count
imported functions that match at least one pattern. The last two
columns show the number of binaries with at least one matching
import, andwhich fraction of the filtered dataset this corresponds to.
We see that imports related to file I/O, the most common category,
are present in almost every fifth binary. Interestingly, even though
WebAssembly was originally not meant to replace JavaScript, but
rather for compute intensive applications, still 212 binaries likely
interact with the DOM from WebAssembly, which attackers could
use for cross-site scripting. In the last row, we see that overall 21.2%
of all binaries import at least one potentially security-critical API.

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 3: Importsmatching potentially security-critical APIs.

Category Patterns
Matching

Imports Binaries %

Code execution eval, exec, execve
emscripten_run_script

383 160 1.9%

Network access xhr, request, http, fetch 944 172 2.0%
File I/O file, fd, path 7,532 1,610 19.0%
DOM interaction document, html, body, element 1,720 212 2.5%
Dynamic linking dlopen, dlsym, dlclose 352 138 1.6%

At least one 10,468 1,797 21.2%

first step is compromising the state or behavior of theWebAssembly
binary itself, e.g., by exploiting an unsafe allocator (Section 4.4.2)
or a buffer overflow on the unmanaged stack (Section 4.4.1). The
second step is actually performing the malicious action to the un-
derlying system. The only way to do so, assuming VM implementa-
tions are bug-free and host security16 is perfect (which they are not
[1, 36]), is to call functions imported into the WebAssembly binary
from the host environment. For example, an attacker could pass an
injected string on the unmanaged stack to an imported function,
e.g., JavaScript’s eval. To estimate how oftenWebAssembly binaries
use such security-critical host APIs, we thus analyze their imports.

Analysis. We identify imported security-critical APIs based on
their import name in the WebAssembly binary. Going by name
(instead of implementation) is necessary because, (1) the imple-
mentation of an imported function is supplied by the host only
at instantiation-time, so it is not available when given only the
binary; and (2) there are many host environments, not all of which
are using JavaScript. WASI for example, defines imports that can
be implemented by different standalone WebAssembly VMs in na-
tive code. We thus identify import names for which the host im-
plementation is likely a security-critical function. E.g., the import
emscripten_run_script inWebAssembly binaries is typically bound
to Emscripten-generated JavaScript code that calls eval. We match
imports against 18 patterns in five categories known to be poten-
tially security-critical APIs:
• Code execution. Imports like eval, exec, or emscripten_run_script.
• Network access. Imports containing XHR, request, http, or fetch.
• File I/O. Imports containing file, fd, or path.
• DOM interaction. Imports containing document, html, body, or

element could manipulate the DOM, which can lead to XSS.
• Dynamic linking. dlopen, dlsym, and dlclose allow loading addi-
tional code at runtime, which can lead to code injection.
To avoid spurious matches, especially for short patterns like fd,

we tokenize import names based on camel-case and non-alphabet
characters, and then check for a pattern to occur verbatim in the
token sequence. E.g., fd_write matches our file I/O category, but
bufdelete does not. We manually inspect matches to ensure they
are plausible and remove benign matches otherwise.

Results. Table 3 shows the results of our name-based import
analysis. The first two columns show the category and patterns
we match import names against. In the third column, we count
imported functions that match at least one pattern. The last two
columns show the number of binaries with at least one matching
16Host security: isolation of WebAssembly execution from the underlying host, e.g.,
ensuring that aWebAssembly program can write only to its designated memory region.

import, andwhich fraction of the filtered dataset this corresponds to.
We see that imports related to file I/O, the most common category,
are present in almost every fifth binary. Interestingly, even though
WebAssembly was originally not meant to replace JavaScript, but
rather for compute intensive applications, still 212 binaries likely
interact with the DOM from WebAssembly, which attackers could
use for cross-site scripting. In the last row, we see that overall 21.2%
of all binaries import at least one potentially security-critical API.

Insight 8. Many binaries (21.2%) import potentially dangerous
APIs from their host environment, which may allow compromised
binaries, e.g., to inject arbitrary code or to write to the file system.

4.5 RQ3: Cryptomining
A study of real-world uses of WebAssembly performed in early
2019 [24] reports cryptomining to be one of the most common use
cases of WebAssembly on the web. That study found 55.7% of the
analyzed websites to use WebAssembly for cryptojacking, i.e., the
practice of using a website visitor’s hardware resources for mining
cryptocurrencies without their consent. Identifying and controlling
cryptominers on the web has been the focus of several recent pieces
of work [15, 25, 34, 43]. In this research question, we study whether
cryptomining is still an important threat today. We address this
question in two ways. First, we analyze those binaries we collected
from the web for signs of being cryptominers. Second, we directly
compare the binaries gathered in earlier work with our dataset.
4.5.1 Analyzing Binaries Found on the Web. To understand the
prevalence of cryptomining today, we analyze all binaries collected
from the web, i.e., direct downloads guided by HTTP Archive and
the results of our own crawling, using VirusTotal. The VirusTotal
API allows to upload and scan files with up to 70 independent third-
party antivirus scanners and malware detectors, and reports back
the number of positive results. Among the 352 analyzed binaries,
VirusTotal reports four files to contain malicious content. Three of
them are likely to be the same program, as they have similar sizes
(68.8±0.7kB) and the same distribution of instructions. These three
files are detected by 26 or more scanning tools employed by Virus-
Total. One of the files is collected from http://monero.cit.net,
which further supports the presumption that the binary is a cryp-
tominer, as “Monero” is the name of a common cryptocurreny.
Moreover, one of three binaries is identical to a binary we collect
also from a GitHub repository called “CryptoNoter”17, which is an
open-source Monero cryptominer. The fourth file reported by Virus-
Total is tested positive by only one scanner. Our manual analysis
shows that the report for this binary is likely to be a false positive.
4.5.2 Comparison with Dataset by Musch et al. [24]. The previous
study is based on 147 unique WebAssembly binaries, which the
authors kindly shared with us. The intersection of their dataset
with ours contains 23 binaries, i.e., 16% of their dataset and 0.2%
of our dataset. To better understand these binaries, we manually
examine them and visit the corresponding websites. We find four
of the 23 binaries to be suspicious. Two of them are among the files
flagged byVirusTotal, as discussed above. For one file from awebsite
that declares itself to be a “blockchain explorer”, we could not
observe any suspicious activity when visiting the source website,
17https://github.com/JayWalker512/CryptoNoter

4.5 RQ3: Cryptomining
A study of real-world uses of WebAssembly performed in early
2019 [24] reports cryptomining to be one of the most common use
cases of WebAssembly on the web. That study found 55.7% of the
analyzed websites to use WebAssembly for cryptojacking, i.e., the
practice of using a website visitor’s hardware resources for mining
cryptocurrencies without their consent. Identifying and controlling
cryptominers on the web has been the focus of several recent pieces
of work [15, 25, 34, 43]. In this research question, we study whether
cryptomining is still an important threat today. We address this
question in two ways. First, we analyze those binaries we collected
from the web for signs of being cryptominers. Second, we directly
compare the binaries gathered in earlier work with our dataset.

4.5.1 Analyzing Binaries Found on the Web. To understand the
prevalence of cryptomining today, we analyze all binaries collected
from the web, i.e., direct downloads guided by HTTP Archive and
the results of our own crawling, using VirusTotal. The VirusTotal
API allows to upload and scan files with up to 70 independent third-
party antivirus scanners and malware detectors, and reports back
the number of positive results. Among the 352 analyzed binaries,
VirusTotal reports four files to contain malicious content. Three of
them are likely to be the same program, as they have similar sizes
(68.8±0.7kB) and the same distribution of instructions. These three

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

files are detected by 26 or more scanning tools employed by Virus-
Total. One of the files is collected from http://monero.cit.net, which
further supports the presumption that the binary is a cryptominer,
as “Monero” is the name of a common cryptocurreny. Moreover,
one of three binaries is identical to a binary we collect also from a
GitHub repository called “CryptoNoter”17, which is an open-source
Monero cryptominer. The fourth file reported by VirusTotal is tested
positive by only one scanner. Our manual analysis shows that the
report for this binary is likely to be a false positive.
4.5.2 Comparison with Dataset by Musch et al. [24]. The previous
study is based on 147 unique WebAssembly binaries, which the
authors kindly shared with us. The intersection of their dataset
with ours contains 23 binaries, i.e., 16% of their dataset and 0.2%
of our dataset. To better understand these binaries, we manually
examine them and visit the corresponding websites. We find four
of the 23 binaries to be suspicious. Two of them are among the files
flagged byVirusTotal, as discussed above. For one file from awebsite
that declares itself to be a “blockchain explorer”, we could not
observe any suspicious activity when visiting the source website,
but also could not identify its functionality, and thus declare it to be
suspicious. For the last suspicious binary, visiting the corresponding
website increases CPU load to 70%. The website offers a service to
mine cryptocurrency and openly advertises the fact that one can
start mining immediately in the browser. That is, the binary is an
example of cryptomining but not cryptojacking.

In summary, we identify only four binaries from our “web” dataset
as possible cryptominers (about 1% of the dataset), three of which
appeared to be inactive when visiting the website. While our analy-
sis maymiss cryptomining binaries, a risk one could reduce through
additional analysis techniques beyond those provided via VirusTo-
tal [24, 43], the prevalence of cryptomining seems to have dropped
significantly over the past one to two years. This result is also
confirmed by a manual analysis of WebAssembly binaries found
on the web (Section 4.6.2) and is in line with other reports [42]
that cryptomining became less appealing after one of the major
cryptomining script providers, Coinhive, shut down. Varlioglu et
al. find a 99% decrease in sites using cryptomining among sites
that had made use of it before. The low numbers of cryptominers
found by our analysis confirms this trend and shows its declining
influence on the WebAssembly ecosystem.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

0 10 20 30 40
Unique binaries, orderd by number of occurrences

0

100

200

300

N
um

be
r

of
 d

om
ai

ns Other
Test for WebAssembly support
Hyphenopoly
Long.js

Figure 8: Binaries found on multiple websites.

but also could not identify its functionality, and thus declare it to be
suspicious. For the last suspicious binary, visiting the corresponding
website increases CPU load to 70%. The website offers a service to
mine cryptocurrency and openly advertises the fact that one can
start mining immediately in the browser. That is, the binary is an
example of cryptomining but not cryptojacking.

In summary, we identify only four binaries from our “web” dataset
as possible cryptominers (about 1% of the dataset), three of which
appeared to be inactive when visiting the website. While our analy-
sis maymiss cryptomining binaries, a risk one could reduce through
additional analysis techniques beyond those provided via VirusTo-
tal [24, 43], the prevalence of cryptomining seems to have dropped
significantly over the past one to two years. This result is also
confirmed by a manual analysis of WebAssembly binaries found
on the web (Section 4.6.2) and is in line with other reports [42]
that cryptomining became less appealing after one of the major
cryptomining script providers, Coinhive, shut down. Varlioglu et
al. find a 99% decrease in sites using cryptomining among sites
that had made use of it before. The low numbers of cryptominers
found by our analysis confirms this trend and shows its declining
influence on the WebAssembly ecosystem.

Insight 9. We find WebAssembly-based cryptominers to have
significantly dropped in importance compared to the results of
an earlier study [24]. This finding motivates security research to
shift the focus from malicious WebAssembly to vulnerabilities in
WebAssembly binaries.

4.6 RQ4: Use Cases on the Web
Given the decreased prevalence of cryptominers, we study what
other use cases WebAssembly has. The following focuses on the
web because it is the most prominent target platform of WebAs-
sembly and because websites are complete applications that we can
manually analyze with reasonable effort. We address the question
in two ways. First, we study binaries that occur across multiple
websites, which helps understand libraries and other widely reused
components (Section 4.6.1). Second, we inspect a random sample
of 100 unique binaries, which helps understand the application
domains of WebAssembly (Section 4.6.2). To capture the full picture
of WebAssembly use cases, the results are on unfiltered binaries.
4.6.1 Binaries Found on Multiple Websites. Out of all 476 unique
binaries found on the web, 70 are reused across at least two differ-
ent top-level domains. Figure 8 shows a histogram of how often
binaries occur on multiple domains. The data follows a long-tail dis-
tribution, i.e., a few binaries occur on many websites, while many
other binaries recur a few times or only once. The top-most widely
distributed binary occurs 371 times, i.e., in 28% of all domains where
we detect WebAssembly binaries.

Table 4: Application domains of 100 randomly sampled,
unique WebAssembly binaries found on the web.

Application domain # Binaries

Games 25
Text processing 11
Visualization / Animation 11
Media processing / Player 9
Demo, e.g., of a
programming language 7

Wasm tutorial or test 5
Chat 3

Application domain # Binaries

Online gambling 2
Barcodes and QR codes 2
Room planning / Furniture 2
Blogging 2
Cryptocurrency wallet 2
Regular expressions 1
Hashing 1
PDF viewer 1

To better understand the most recurring binaries, we analyze
them through a combination of automated clustering and manual
inspection. The automated clustering represents each binary as
a set of byte n-grams [21], summarizes the number of n-gram
occurrences in a binary into a characteristic vector, and then clusters
binaries based on the pairwise cosine similarity of their vectors. We
then inspect the top-most binaries in Figure 8, using the clusters to
quickly identify variants of the same binary. Our analysis shows the
following to be the most widely occurring WebAssembly binaries.

Testing for WebAssembly support. At least 509 domains (38.5%
of all domains that use WebAssembly) are serving a WebAssembly
binary that tests whether the browser supports WebAssembly at
all. We found two variants of such binaries, both of which are
rather small: a six instruction binary with a single function called
test and an eight byte binary that only contains the WebAssembly
magic number followed by the language version. Websites serving
these test binaries often also serve larger binaries, i.e., they first
test whether WebAssembly is supported, and if it is, load a more
complex binary. For example, at least 397 domains that serve a test
binary also serve the Hyphenopoly library discussed next.

Hyphenopoly. At least 462 domains (34.9% of all domains that use
WebAssembly) serve binaries that are part of the Hyphenopoly.js
JavaScript library, which uses WebAssembly to implement its core
functionality. Hyphenopoly is a polyfill that “hyphenates text if the
user agent does not support CSS-hyphenation”.18 Our clustering
identifies 24 variants of this binary, which are all generated from
the same underlying library to support different natural languages.

64-bit integer arithmetic in long.js. At least 331 domains (25% of
all domains that use WebAssembly) serve a binary that is part of
long.js, a JavaScript library for 64-bit integer computations.19 The
library is commonly used in video players.

Draco library for 3D data compression. At least 25 domains (1.8%
of all domains that useWebAssembly) serve a binary that belongs to
the Draco library, which support compressing and decompressing
3D data.20 These binaries commonly occur on websites with 3D
demos or integrated 3D assets.

Insight 10. The most widely occurring binaries on the web are dy-
namic tests for WebAssembly support and JavaScript-WebAssembly
libraries that perform computation-heavy tasks.

18https://github.com/mnater/Hyphenopoly
19https://github.com/dcodeIO/long.js
20https://github.com/google/draco

4.6 RQ4: Use Cases on the Web
Given the decreased prevalence of cryptominers, we study what
other use cases WebAssembly has. The following focuses on the
web because it is the most prominent target platform of WebAs-
sembly and because websites are complete applications that we can
manually analyze with reasonable effort. We address the question
in two ways. First, we study binaries that occur across multiple

17https://github.com/JayWalker512/CryptoNoter

0 10 20 30 40
Unique binaries, orderd by number of occurrences

0

100

200

300

N
um

be
r

of
 d

om
ai

ns Other
Test for WebAssembly support
Hyphenopoly
Long.js

Figure 8: Binaries found on multiple websites.

websites, which helps understand libraries and other widely reused
components (Section 4.6.1). Second, we inspect a random sample
of 100 unique binaries, which helps understand the application
domains of WebAssembly (Section 4.6.2). To capture the full picture
of WebAssembly use cases, the results are on unfiltered binaries.
4.6.1 Binaries Found on Multiple Websites. Out of all 476 unique
binaries found on the web, 70 are reused across at least two differ-
ent top-level domains. Figure 8 shows a histogram of how often
binaries occur on multiple domains. The data follows a long-tail dis-
tribution, i.e., a few binaries occur on many websites, while many
other binaries recur a few times or only once. The top-most widely
distributed binary occurs 371 times, i.e., in 28% of all domains where
we detect WebAssembly binaries.

To better understand the most recurring binaries, we analyze
them through a combination of automated clustering and manual
inspection. The automated clustering represents each binary as
a set of byte n-grams [21], summarizes the number of n-gram
occurrences in a binary into a characteristic vector, and then clusters
binaries based on the pairwise cosine similarity of their vectors. We
then inspect the top-most binaries in Figure 8, using the clusters to
quickly identify variants of the same binary. Our analysis shows the
following to be the most widely occurring WebAssembly binaries.

Testing for WebAssembly support. At least 509 domains (38.5%
of all domains that use WebAssembly) are serving a WebAssembly
binary that tests whether the browser supports WebAssembly at
all. We found two variants of such binaries, both of which are
rather small: a six instruction binary with a single function called
test and an eight byte binary that only contains the WebAssembly
magic number followed by the language version. Websites serving
these test binaries often also serve larger binaries, i.e., they first
test whether WebAssembly is supported, and if it is, load a more
complex binary. For example, at least 397 domains that serve a test
binary also serve the Hyphenopoly library discussed next.

Hyphenopoly. At least 462 domains (34.9% of all domains that use
WebAssembly) serve binaries that are part of the Hyphenopoly.js
JavaScript library, which uses WebAssembly to implement its core
functionality. Hyphenopoly is a polyfill that “hyphenates text if the
user agent does not support CSS-hyphenation”.18 Our clustering
identifies 24 variants of this binary, which are all generated from
the same underlying library to support different natural languages.

64-bit integer arithmetic in long.js. At least 331 domains (25% of
all domains that use WebAssembly) serve a binary that is part of
long.js, a JavaScript library for 64-bit integer computations.19 The
library is commonly used in video players.

Draco library for 3D data compression. At least 25 domains (1.8%
of all domains that useWebAssembly) serve a binary that belongs to
18https://github.com/mnater/Hyphenopoly
19https://github.com/dcodeIO/long.js

http://monero.cit.net
https://github.com/JayWalker512/CryptoNoter
https://github.com/mnater/Hyphenopoly
https://github.com/dcodeIO/long.js

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 4: Application domains of 100 randomly sampled,
unique WebAssembly binaries found on the web.

Application domain # Binaries

Games 25
Text processing 11
Visualization / Animation 11
Media processing / Player 9
Demo, e.g., of a 7
programming language
Wasm tutorial or test 5
Chat 3

Application domain # Binaries

Online gambling 2
Barcodes and QR codes 2
Room planning / Furniture 2
Blogging 2
Cryptocurrency wallet 2
Regular expressions 1
Hashing 1
PDF viewer 1

the Draco library, which support compressing and decompressing
3D data.20 These binaries commonly occur on websites with 3D
demos or integrated 3D assets.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

0 10 20 30 40
Unique binaries, orderd by number of occurrences

0

100

200

300

N
um

be
r

of
 d

om
ai

ns Other
Test for WebAssembly support
Hyphenopoly
Long.js

Figure 8: Binaries found on multiple websites.

but also could not identify its functionality, and thus declare it to be
suspicious. For the last suspicious binary, visiting the corresponding
website increases CPU load to 70%. The website offers a service to
mine cryptocurrency and openly advertises the fact that one can
start mining immediately in the browser. That is, the binary is an
example of cryptomining but not cryptojacking.

In summary, we identify only four binaries from our “web” dataset
as possible cryptominers (about 1% of the dataset), three of which
appeared to be inactive when visiting the website. While our analy-
sis maymiss cryptomining binaries, a risk one could reduce through
additional analysis techniques beyond those provided via VirusTo-
tal [24, 43], the prevalence of cryptomining seems to have dropped
significantly over the past one to two years. This result is also
confirmed by a manual analysis of WebAssembly binaries found
on the web (Section 4.6.2) and is in line with other reports [42]
that cryptomining became less appealing after one of the major
cryptomining script providers, Coinhive, shut down. Varlioglu et
al. find a 99% decrease in sites using cryptomining among sites
that had made use of it before. The low numbers of cryptominers
found by our analysis confirms this trend and shows its declining
influence on the WebAssembly ecosystem.

Insight 9. We find WebAssembly-based cryptominers to have
significantly dropped in importance compared to the results of
an earlier study [24]. This finding motivates security research to
shift the focus from malicious WebAssembly to vulnerabilities in
WebAssembly binaries.

4.6 RQ4: Use Cases on the Web
Given the decreased prevalence of cryptominers, we study what
other use cases WebAssembly has. The following focuses on the
web because it is the most prominent target platform of WebAs-
sembly and because websites are complete applications that we can
manually analyze with reasonable effort. We address the question
in two ways. First, we study binaries that occur across multiple
websites, which helps understand libraries and other widely reused
components (Section 4.6.1). Second, we inspect a random sample
of 100 unique binaries, which helps understand the application
domains of WebAssembly (Section 4.6.2). To capture the full picture
of WebAssembly use cases, the results are on unfiltered binaries.
4.6.1 Binaries Found on Multiple Websites. Out of all 476 unique
binaries found on the web, 70 are reused across at least two differ-
ent top-level domains. Figure 8 shows a histogram of how often
binaries occur on multiple domains. The data follows a long-tail dis-
tribution, i.e., a few binaries occur on many websites, while many
other binaries recur a few times or only once. The top-most widely
distributed binary occurs 371 times, i.e., in 28% of all domains where
we detect WebAssembly binaries.

Table 4: Application domains of 100 randomly sampled,
unique WebAssembly binaries found on the web.

Application domain # Binaries

Games 25
Text processing 11
Visualization / Animation 11
Media processing / Player 9
Demo, e.g., of a
programming language 7

Wasm tutorial or test 5
Chat 3

Application domain # Binaries

Online gambling 2
Barcodes and QR codes 2
Room planning / Furniture 2
Blogging 2
Cryptocurrency wallet 2
Regular expressions 1
Hashing 1
PDF viewer 1

To better understand the most recurring binaries, we analyze
them through a combination of automated clustering and manual
inspection. The automated clustering represents each binary as
a set of byte n-grams [21], summarizes the number of n-gram
occurrences in a binary into a characteristic vector, and then clusters
binaries based on the pairwise cosine similarity of their vectors. We
then inspect the top-most binaries in Figure 8, using the clusters to
quickly identify variants of the same binary. Our analysis shows the
following to be the most widely occurring WebAssembly binaries.

Testing for WebAssembly support. At least 509 domains (38.5%
of all domains that use WebAssembly) are serving a WebAssembly
binary that tests whether the browser supports WebAssembly at
all. We found two variants of such binaries, both of which are
rather small: a six instruction binary with a single function called
test and an eight byte binary that only contains the WebAssembly
magic number followed by the language version. Websites serving
these test binaries often also serve larger binaries, i.e., they first
test whether WebAssembly is supported, and if it is, load a more
complex binary. For example, at least 397 domains that serve a test
binary also serve the Hyphenopoly library discussed next.

Hyphenopoly. At least 462 domains (34.9% of all domains that use
WebAssembly) serve binaries that are part of the Hyphenopoly.js
JavaScript library, which uses WebAssembly to implement its core
functionality. Hyphenopoly is a polyfill that “hyphenates text if the
user agent does not support CSS-hyphenation”.18 Our clustering
identifies 24 variants of this binary, which are all generated from
the same underlying library to support different natural languages.

64-bit integer arithmetic in long.js. At least 331 domains (25% of
all domains that use WebAssembly) serve a binary that is part of
long.js, a JavaScript library for 64-bit integer computations.19 The
library is commonly used in video players.

Draco library for 3D data compression. At least 25 domains (1.8%
of all domains that useWebAssembly) serve a binary that belongs to
the Draco library, which support compressing and decompressing
3D data.20 These binaries commonly occur on websites with 3D
demos or integrated 3D assets.

Insight 10. The most widely occurring binaries on the web are dy-
namic tests for WebAssembly support and JavaScript-WebAssembly
libraries that perform computation-heavy tasks.

18https://github.com/mnater/Hyphenopoly
19https://github.com/dcodeIO/long.js
20https://github.com/google/draco

4.6.2 Manual Inspection of a Random Sample. To better understand
the long-tail of binaries found on a few or only a single website, we
also inspect a random sample of 100 unique binaries found on the
web. We exclude binaries detected only via the WebAssembly top
lists (Section 3.3.2) to avoid biasing the results toward pre-selected
application domains. By inspecting the binaries, the corresponding
websites, and how the websites uses the binaries, we identify the
purpose of 84 out of the 100 binaries. Table 4 summarizes the ap-
plication domains that the binaries are used in. The most common
domains are games, accounting for a quarter of all binaries. Text
processing and applications in visualization and animation are also
relatively common, with 11/100 binaries each. The remaining list
shows the diversity of application domains WebAssembly is used
in, ranging from online demos of programming languages, over
support for creating and scanning barcodes to document viewers.

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

4.6.2 Manual Inspection of a Random Sample. To better understand
the long-tail of binaries found on a few or only a single website, we
also inspect a random sample of 100 unique binaries found on the
web. We exclude binaries detected only via the WebAssembly top
lists (Section 3.3.2) to avoid biasing the results toward pre-selected
application domains. By inspecting the binaries, the corresponding
websites, and how the websites uses the binaries, we identify the
purpose of 84 out of the 100 binaries. Table 4 summarizes the ap-
plication domains that the binaries are used in. The most common
domains are games, accounting for a quarter of all binaries. Text
processing and applications in visualization and animation are also
relatively common, with 11/100 binaries each. The remaining list
shows the diversity of application domains WebAssembly is used
in, ranging from online demos of programming languages, over
support for creating and scanning barcodes to document viewers.

Insight 11. The application domains of WebAssembly binaries
on the web reflect the diversity of the web itself, showing that
WebAssembly is used in a wide range of applications.

4.7 RQ5: Minification and Names
As a binary format with only a low-level textual representation,
WebAssembly binaries cannot be as easily inspected and under-
stood as source code, e.g., in JavaScript. The ability to understand
a WebAssembly binary is relevant for auditing third-party code
and reverse engineering malware. For example, when a frequently
depended-upon npm package contains a WebAssembly binary, the
package distribution platform may want to check that it does not
perform malicious actions, such as stealing cryptocurrency.21 Be-
cause meaningful names, e.g., for functions, are helpful for under-
standing code [17], especially in binaries, we study to what extent
WebAssembly binaries provide meaningful names.

Analysis. Weperform a static analysis to assess two name-related
characteristics of binaries. First, the analysis checks whether a bi-
nary contains a names section. While by default binaries contain
names only for imported and exported program elements, the op-
tional names section maps all function indices to identifiers. Second,
the analysis checks whether the names of imported and exported
names are minified. Both to save space and to obfuscate the code,
compilers may shorten names down to single or two-letter names
devoid of information. The analysis considers a WebAssembly bi-
nary as minified if it contains more than ten import or export names
(to exclude small, potentially hand-written modules), but the aver-
age length of those names is ≤ 4 (to account for some imports that
are never minified by Emscripten, thus increasing the average).

Results. Our results show an interesting difference between the
full dataset and binaries found on the web. In the full data set, many
binaries contain a names section (19.6%) but only 4.1% of the binaries
are minified. In contrast, among all binaries found on the web, only
13.3% contain a names section but 28.8% are minified. These results
show that for a significant fraction of websites, not only minified
JavaScript code [37], but also minified WebAssembly binaries make
it harder to understand what code is running on the client side.
21https://blog.npmjs.org/post/185397814280/plot-to-steal-
cryptocurrency-foiled-by-the-npm

Insight 12. Many WebAssembly binaries on the web (28.8%)
are minified and do not contain useful names. To help security
analysts understand third-party code, future work on decompiling
and reverse engineering WebAssembly is needed.

5 RELATEDWORK
WebAssembly in general. WebAssembly has been formally de-

fined [10], including a mechanized proof of the soundness of its
type system [44]. Since the initial version of the language, several
language extensions have been proposed [6, 32, 33].

Cryptomining. Cryptojacking, i.e., websites that use the unsus-
pecting client’s computing resources for mining cryptocurrencies,
has been among the first applications of WebAssembly [15, 25, 34].
Several techniques detect and defend against cryptojacking [14, 43].
Section 4.5 studies how prevalent this threat is, showing that its
importance has decreased over time. Wang et al. [43] discuss limita-
tions of VirusTotal in identifying cryptomining, which may impact
the validity of our results. However, our manual inspection of bina-
ries confirms the low prevalence of cryptominers among today’s
WebAssembly binaries, which is also supported by Varlioglu et al.’s
observations about the decline of cryptojacking [42].

WebAssembly attacks. Beyond cryptomining, other kinds of at-
tacks based on WebAssembly exist. Lehmann et al. show that vul-
nerabilities that propagate from memory-unsafe source languages
may also be exploited inWebAssembly [18]. Others report examples
of such attacks [3, 22]. Custom memory allocators are potentially
not hardened [5, 22]. Section 4.4 shows that several of the risks
reported by prior work affect a wide range of binaries. Another
line of attack are malicious WebAssembly binaries, e.g., to escape
the browser sandbox [1, 36], attacks that use side channels [9], and
attacks based on speculative execution [20].

WebAssembly defenses. A defense against application-level at-
tacks is to enforce security policies on untrusted WebAssembly
binaries through taint tracking [8, 40]. WebAssembly also serves
as a technology to implement defenses, e.g., to sandbox libraries
executed in a browser [26], to implement formally verified cryptog-
raphy [30], or to ensure constant-time operations for cryptographic
primitives [45]. Our results call for additional mitigations, e.g., to
defend against vulnerabilities propagated from source languages,
and provide guidelines for developing such techniques, e.g., by
showing which toolchains are most commonly used.

Studies of WebAssembly. Musch et al. [24] systematically collect
WebAssembly from the web and report cryptomining to be one
of its prime use cases. Our work extends their findings in several
ways: (i) by considering a wider range of sources to gather binaries,
which results in 58× more binaries; (ii) by showing that other ap-
plications than cryptomining have become much more prevalent;
and (iii) by studying several properties of WebAssembly not con-
sidered before, e.g., security properties and toolchains. Other work
studies the performance of WebAssembly and compares it to native
performance [12], however again on a small set of binaries.

WebAssembly benchmarks. Prior work on WebAssembly often
relies on benchmark suites that may not well represent the diversity
of real-world WebAssembly binaries, such as PolyBenchC, SciMark,
and Ostrich [13], i.e., benchmarks of numerical or scientific compu-
tations [10, 11, 19], SPEC CPU, i.e., benchmarks of complex C/C++

4.7 RQ5: Minification and Names
As a binary format with only a low-level textual representation,
WebAssembly binaries cannot be as easily inspected and under-
stood as source code, e.g., in JavaScript. The ability to understand
a WebAssembly binary is relevant for auditing third-party code
and reverse engineering malware. For example, when a frequently
depended-upon npm package contains a WebAssembly binary, the
package distribution platform may want to check that it does not
perform malicious actions, such as stealing cryptocurrency.21 Be-
cause meaningful names, e.g., for functions, are helpful for under-
standing code [17], especially in binaries, we study to what extent
WebAssembly binaries provide meaningful names.

20https://github.com/google/draco
21https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-foiled-by-
the-npm

Analysis. Weperform a static analysis to assess two name-related
characteristics of binaries. First, the analysis checks whether a bi-
nary contains a names section. While by default binaries contain
names only for imported and exported program elements, the op-
tional names section maps all function indices to identifiers. Second,
the analysis checks whether the names of imported and exported
names are minified. Both to save space and to obfuscate the code,
compilers may shorten names down to single or two-letter names
devoid of information. The analysis considers a WebAssembly bi-
nary as minified if it contains more than ten import or export names
(to exclude small, potentially hand-written modules), but the aver-
age length of those names is ≤ 4 (to account for some imports that
are never minified by Emscripten, thus increasing the average).

Results. Our results show an interesting difference between the
full dataset and binaries found on the web. In the full data set, many
binaries contain a names section (19.6%) but only 4.1% of the binaries
are minified. In contrast, among all binaries found on the web, only
13.3% contain a names section but 28.8% are minified. These results
show that for a significant fraction of websites, not only minified
JavaScript code [37], but also minified WebAssembly binaries make
it harder to understand what code is running on the client side.An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

4.6.2 Manual Inspection of a Random Sample. To better understand
the long-tail of binaries found on a few or only a single website, we
also inspect a random sample of 100 unique binaries found on the
web. We exclude binaries detected only via the WebAssembly top
lists (Section 3.3.2) to avoid biasing the results toward pre-selected
application domains. By inspecting the binaries, the corresponding
websites, and how the websites uses the binaries, we identify the
purpose of 84 out of the 100 binaries. Table 4 summarizes the ap-
plication domains that the binaries are used in. The most common
domains are games, accounting for a quarter of all binaries. Text
processing and applications in visualization and animation are also
relatively common, with 11/100 binaries each. The remaining list
shows the diversity of application domains WebAssembly is used
in, ranging from online demos of programming languages, over
support for creating and scanning barcodes to document viewers.

Insight 11. The application domains of WebAssembly binaries
on the web reflect the diversity of the web itself, showing that
WebAssembly is used in a wide range of applications.

4.7 RQ5: Minification and Names
As a binary format with only a low-level textual representation,
WebAssembly binaries cannot be as easily inspected and under-
stood as source code, e.g., in JavaScript. The ability to understand
a WebAssembly binary is relevant for auditing third-party code
and reverse engineering malware. For example, when a frequently
depended-upon npm package contains a WebAssembly binary, the
package distribution platform may want to check that it does not
perform malicious actions, such as stealing cryptocurrency.21 Be-
cause meaningful names, e.g., for functions, are helpful for under-
standing code [17], especially in binaries, we study to what extent
WebAssembly binaries provide meaningful names.

Analysis. Weperform a static analysis to assess two name-related
characteristics of binaries. First, the analysis checks whether a bi-
nary contains a names section. While by default binaries contain
names only for imported and exported program elements, the op-
tional names section maps all function indices to identifiers. Second,
the analysis checks whether the names of imported and exported
names are minified. Both to save space and to obfuscate the code,
compilers may shorten names down to single or two-letter names
devoid of information. The analysis considers a WebAssembly bi-
nary as minified if it contains more than ten import or export names
(to exclude small, potentially hand-written modules), but the aver-
age length of those names is ≤ 4 (to account for some imports that
are never minified by Emscripten, thus increasing the average).

Results. Our results show an interesting difference between the
full dataset and binaries found on the web. In the full data set, many
binaries contain a names section (19.6%) but only 4.1% of the binaries
are minified. In contrast, among all binaries found on the web, only
13.3% contain a names section but 28.8% are minified. These results
show that for a significant fraction of websites, not only minified
JavaScript code [37], but also minified WebAssembly binaries make
it harder to understand what code is running on the client side.
21https://blog.npmjs.org/post/185397814280/plot-to-steal-
cryptocurrency-foiled-by-the-npm

Insight 12. Many WebAssembly binaries on the web (28.8%)
are minified and do not contain useful names. To help security
analysts understand third-party code, future work on decompiling
and reverse engineering WebAssembly is needed.

5 RELATEDWORK
WebAssembly in general. WebAssembly has been formally de-

fined [10], including a mechanized proof of the soundness of its
type system [44]. Since the initial version of the language, several
language extensions have been proposed [6, 32, 33].

Cryptomining. Cryptojacking, i.e., websites that use the unsus-
pecting client’s computing resources for mining cryptocurrencies,
has been among the first applications of WebAssembly [15, 25, 34].
Several techniques detect and defend against cryptojacking [14, 43].
Section 4.5 studies how prevalent this threat is, showing that its
importance has decreased over time. Wang et al. [43] discuss limita-
tions of VirusTotal in identifying cryptomining, which may impact
the validity of our results. However, our manual inspection of bina-
ries confirms the low prevalence of cryptominers among today’s
WebAssembly binaries, which is also supported by Varlioglu et al.’s
observations about the decline of cryptojacking [42].

WebAssembly attacks. Beyond cryptomining, other kinds of at-
tacks based on WebAssembly exist. Lehmann et al. show that vul-
nerabilities that propagate from memory-unsafe source languages
may also be exploited inWebAssembly [18]. Others report examples
of such attacks [3, 22]. Custom memory allocators are potentially
not hardened [5, 22]. Section 4.4 shows that several of the risks
reported by prior work affect a wide range of binaries. Another
line of attack are malicious WebAssembly binaries, e.g., to escape
the browser sandbox [1, 36], attacks that use side channels [9], and
attacks based on speculative execution [20].

WebAssembly defenses. A defense against application-level at-
tacks is to enforce security policies on untrusted WebAssembly
binaries through taint tracking [8, 40]. WebAssembly also serves
as a technology to implement defenses, e.g., to sandbox libraries
executed in a browser [26], to implement formally verified cryptog-
raphy [30], or to ensure constant-time operations for cryptographic
primitives [45]. Our results call for additional mitigations, e.g., to
defend against vulnerabilities propagated from source languages,
and provide guidelines for developing such techniques, e.g., by
showing which toolchains are most commonly used.

Studies of WebAssembly. Musch et al. [24] systematically collect
WebAssembly from the web and report cryptomining to be one
of its prime use cases. Our work extends their findings in several
ways: (i) by considering a wider range of sources to gather binaries,
which results in 58× more binaries; (ii) by showing that other ap-
plications than cryptomining have become much more prevalent;
and (iii) by studying several properties of WebAssembly not con-
sidered before, e.g., security properties and toolchains. Other work
studies the performance of WebAssembly and compares it to native
performance [12], however again on a small set of binaries.

WebAssembly benchmarks. Prior work on WebAssembly often
relies on benchmark suites that may not well represent the diversity
of real-world WebAssembly binaries, such as PolyBenchC, SciMark,
and Ostrich [13], i.e., benchmarks of numerical or scientific compu-
tations [10, 11, 19], SPEC CPU, i.e., benchmarks of complex C/C++

5 RELATEDWORK
WebAssembly in general. WebAssembly has been formally de-

fined [10], including a mechanized proof of the soundness of its
type system [44]. Since the initial version of the language, several
language extensions have been proposed [6, 32, 33].

Cryptomining. Cryptojacking, i.e., websites that use the unsus-
pecting client’s computing resources for mining cryptocurrencies,
has been among the first applications of WebAssembly [15, 25, 34].
Several techniques detect and defend against cryptojacking [14, 43].
Section 4.5 studies how prevalent this threat is, showing that its
importance has decreased over time. Wang et al. [43] discuss limita-
tions of VirusTotal in identifying cryptomining, which may impact
the validity of our results. However, our manual inspection of bina-
ries confirms the low prevalence of cryptominers among today’s
WebAssembly binaries, which is also supported by Varlioglu et al.’s
observations about the decline of cryptojacking [42].

WebAssembly attacks. Beyond cryptomining, other kinds of at-
tacks based on WebAssembly exist. Lehmann et al. show that vul-
nerabilities that propagate from memory-unsafe source languages
may also be exploited inWebAssembly [18]. Others report examples
of such attacks [3, 22]. Custom memory allocators are potentially
not hardened [5, 22]. Section 4.4 shows that several of the risks
reported by prior work affect a wide range of binaries. Another
line of attack are malicious WebAssembly binaries, e.g., to escape
the browser sandbox [1, 36], attacks that use side channels [9], and
attacks based on speculative execution [20].

WebAssembly defenses. A defense against application-level at-
tacks is to enforce security policies on untrusted WebAssembly
binaries through taint tracking [8, 40]. WebAssembly also serves

https://github.com/google/draco
https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-foiled-by-the-npm
https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-foiled-by-the-npm

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Aaron Hilbig, Daniel Lehmann, and Michael Pradel

as a technology to implement defenses, e.g., to sandbox libraries
executed in a browser [26], to implement formally verified cryptog-
raphy [30], or to ensure constant-time operations for cryptographic
primitives [45]. Our results call for additional mitigations, e.g., to
defend against vulnerabilities propagated from source languages,
and provide guidelines for developing such techniques, e.g., by
showing which toolchains are most commonly used.

Studies of WebAssembly. Musch et al. [24] systematically collect
WebAssembly from the web and report cryptomining to be one
of its prime use cases. Our work extends their findings in several
ways: (i) by considering a wider range of sources to gather binaries,
which results in 58× more binaries; (ii) by showing that other ap-
plications than cryptomining have become much more prevalent;
and (iii) by studying several properties of WebAssembly not con-
sidered before, e.g., security properties and toolchains. Other work
studies the performance of WebAssembly and compares it to native
performance [12], however again on a small set of binaries.

WebAssembly benchmarks. Prior work on WebAssembly often
relies on benchmark suites that may not well represent the diversity
of real-world WebAssembly binaries, such as PolyBenchC, SciMark,
and Ostrich [13], i.e., benchmarks of numerical or scientific compu-
tations [10, 11, 19], SPEC CPU, i.e., benchmarks of complex C/C++
programs that are not typically compiled to WebAssembly [12, 18],
and small sets of hand-picked applications [18]. This paper instead
presents a set of thousands of real-world binaries collected from
various sources, which we make available for future research.

Studies of other languages and ecosystems. Beyond WebAssembly,
other studies investigate JavaScript and web security in general,
including studies of minified and obfuscated code in the web [37], of
the use of the eval [31], of the communication betweenwebsites and
embedded frames with 3rd-party content [38], of outdated libraries
in the web [16], of trust relationships between websites that include
remote libraries and their corresponding library providers [27], of
implicit type conversations in JavaScript code [29], of ReDoS vul-
nerabilities in JavaScript-based web servers [39], of XSS vulnera-
bilities [23], and of performance issues in JavaScript [35]. Inspired
by all that work, this paper fills in important gaps in the existing
knowledge about security properties of real-world WebAssembly.

6 CONCLUSION
This paper presents a comprehensive empirical study of security
properties, languages, and use cases of a diverse set of real-world
WebAssembly binaries. After gathering binaries from several sources,
ranging from source code repositories over packages managers to
live websites, we analyze them through a combination of static
code analysis, manual inspection, and statistical analysis. Our study
shows that WebAssembly has grown into a diverse ecosystem with
new challenges and opportunities for security researchers and prac-
titioners, e.g., in analyzing vulnerabilities in WebAssembly binaries,
in hardening binaries against exploitation, and in helping security
analysts reverse engineer binaries.Wemake the binaries underlying
our study, which yields by far the largest benchmark of WebAssem-
bly binaries to date, available to support future work.

ACKNOWLEDGMENTS
This work was supported by the European Research Council (ERC,
grant agreement 851895), and by the German Research Foundation
within the ConcSys and Perf4JS projects.

REFERENCES
[1] Georgi Geshev Alex Plaskett, Fabian Beterke. 2018. Apple Safari – Wasm Section

Exploit.
[2] Javier Cabrera Arteaga, Orestis Floros Malivitsis, Oscar Luis Vera Pérez, Benoit

Baudry, and Martin Monperrus. 2020. CROW: Code Diversification for WebAs-
sembly. arXiv preprint arXiv:2008.07185 (2020).

[3] John Bergbom. 2018. Memory safety: old vulnerabilities become new with WebAs-
sembly.

[4] Javier Cabrera Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas Satabin,
Benoit Baudry, and Martin Monperrus. 2020. Superoptimization of WebAssembly
bytecode. In ICPS Companion 2020. 36–40.

[5] Frank Denis. 2018. WebAssembly doesn’t make unsafe languages safe (yet).
[6] Craig Disselkoen, John Renner, ConradWatt, Tal Garfinkel, Amit Levy, and Deian

Stefan. 2019. Position Paper: Progressive Memory Safety for WebAssembly. In
HASP.

[7] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust used
Safely by Software Developers?. In ICSE. 246–257.

[8] William Fu, Raymond Lin, and Daniel Inge. 2018. TaintAssembly: Taint-Based
Information Flow Control Tracking for WebAssembly. CoRR abs/1802.01050
(2018).

[9] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. 2018. Drive-By
Key-Extraction Cache Attacks from Portable Code. In ACNS.

[10] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the web
up to speed with WebAssembly. In PLDI.

[11] David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren. 2018. Numerical
computing on the web: benchmarking for the future. In DLS. ACM, 88–100.

[12] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. 2019. Not
So Fast: Analyzing the Performance of WebAssembly vs. Native Code. In 2019
USENIX ATC. 107–120.

[13] Faiz Khan, Vincent Foley-Bourgon, Sujay Kathrotia, Erick Lavoie, and Laurie J.
Hendren. 2014. Using JavaScript and WebCL for numerical computations: a
comparative study of native and web technologies. In DLS’14. ACM, 91–102.

[14] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew
Miller, Nikita Borisov, Manos Antonakakis, and Michael Bailey. 2019. Outguard:
Detecting in-browser covert cryptocurrency mining in the wild. In WWW ’19.

[15] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina
Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni Vigna. 2018.
MineSweeper: An In-depth Look into Drive-by Cryptocurrency Mining and
Its Defense. In CCS 2018.

[16] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In NDSS 2017.

[17] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identifiers. In ICPC. 3–12.

[18] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is
New Again: Binary Security of WebAssembly (USENIX Security 2020). 217–234.

[19] Daniel Lehmann and Michael Pradel. 2019. Wasabi: A framework for dynamically
analyzing webassembly (ASPLOS 2019). 1045–1058.

[20] Giorgi Maisuradze and Christian Rossow. 2018. Ret2spec: Speculative Execution
Using Return Stack Buffers. In CCS.

[21] Christopher D Manning, Hinrich Schütze, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Cambridge university press.

[22] Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and Justin Engler. 2018. Security
Chasms of WASM. NCC Group Whitepaper.

[23] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. Network and Distributed System Security Symposium (NDSS).

[24] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. 2019.
New Kid on the Web: A Study on the Prevalence of WebAssembly in the Wild
(DIMVA 2019). Springer, 23–42.

[25] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. 2019.
Thieves in the Browser: Web-based Cryptojacking in the Wild. In ARES.

[26] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,
Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In USENIX Security.

[27] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote JavaScript inclusions.
In CCS. 736–747.

[28] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2018. Tranco: A research-oriented top sites ranking
hardened against manipulation. arXiv preprint arXiv:1802.01156 (2018).

An Empirical Study of Real-World WebAssembly Binaries WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

[29] Michael Pradel and Koushik Sen. 2015. The Good, the Bad, and the Ugly: An
Empirical Study of Implicit Type Conversions in JavaScript. In ECOOP.

[30] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan. 2019. Formally
Verified Cryptographic Web Applications in WebAssembly. In SP.

[31] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. 2011. Automated
construction of JavaScript benchmarks. In OOPSLA. 677–694.

[32] Andreas Rossberg. 2019. Multiple per-module memories for Wasm.
[33] Andreas Rossberg. 2019. Proposal for adding basic reference types.
[34] Jan Rüth, Torsten Zimmermann, Konrad Wolsing, and Oliver Hohlfeld. 2018.

Digging into Browser-based Crypto Mining. In IMC.
[35] Marija Selakovic andMichael Pradel. 2016. Performance Issues and Optimizations

in JavaScript: An Empirical Study. In ICSE.
[36] Natalie Silvanovich. 2018. The Problems and Promise of WebAssembly.
[37] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. 2019. Anything

to Hide? Studying Minified and Obfuscated Code in the Web. In WWW.
[38] Sooel Son and Vitaly Shmatikov. 2013. The Postman Always Rings Twice: At-

tacking and Defending postMessage in HTML5 Websites.. In NDSS.
[39] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study

of ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX Sec.

[40] Aron Szanto, Timothy Tamm, and Artidoro Pagnoni. 2018. Taint Tracking for
WebAssembly. https://arxiv.org/abs/1807.08349. arXiv:1807.08349 [cs.CR]

[41] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy (SP 2013).

[42] Said Varlioglu, Bilal Gonen, Murat Ozer, and Mehmet Bastug. 2020. Is Crypto-
jacking Dead after Coinhive Shutdown?. In ICICT. IEEE, 385–389.

[43] Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W Hamlen, and Shuang
Hao. 2018. Seismic: Secure in-lined script monitors for interrupting cryptojacks.
In European Symposium on Research in Computer Security. Springer, 122–142.

[44] Conrad Watt. 2018. Mechanising and verifying the WebAssembly specification.
In CPP 2018. 53–65.

[45] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan.
2019. CT-Wasm: Type-Driven Secure Cryptography for the Web Ecosystem.
POPL (2019).

[46] Hui Xu, Zhuangbin Chen, Mingshen Sun, and Yangfan Zhou. 2020. Memory-
Safety Challenge Considered Solved? An Empirical Study with All Rust CVEs.
arXiv preprint arXiv:2003.03296 (2020).

https://arxiv.org/abs/1807.08349
https://arxiv.org/abs/1807.08349

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Collecting Binaries from Repositories
	3.2 Collecting Binaries from Package Managers
	3.3 Collecting Binaries from Websites
	3.4 Collecting Binaries Manually
	3.5 Deduplication and Filtering

	4 Results
	4.1 Implementation and Experimental Setup
	4.2 Overview of Dataset
	4.3 RQ1: Source Languages and Tools
	4.4 RQ2: Vulnerabilities Propagated from Source Languages
	4.5 RQ3: Cryptomining
	4.6 RQ4: Use Cases on the Web
	4.7 RQ5: Minification and Names

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

