
Wasm-R3: Record-Reduce-Replay for Realistic and
Standalone WebAssembly Benchmarks
DOEHYUN BAEK∗, KAIST, South Korea

JAKOB GETZ∗, University of Stuttgart, Germany

YUSUNG SIM, KAIST, South Korea

DANIEL LEHMANN, Google Germany GmbH, Germany

BEN L. TITZER, Carnegie Mellon University, USA

SUKYOUNG RYU, KAIST, South Korea

MICHAEL PRADEL, University of Stuttgart, Germany

WebAssembly (Wasm for short) brings a new, powerful capability to the web as well as Edge, IoT, and embedded

systems. Wasm is a portable, compact binary code format with high performance and robust sandboxing

properties. As Wasm applications grow in size and importance, the complex performance characteristics of

diverse Wasm engines demand robust, representative benchmarks for proper tuning. Stopgap benchmark

suites, such as PolyBenchC and libsodium, continue to be used in the literature, though they are known

to be unrepresentative. Porting of more complex suites remains difficult because Wasm lacks many system

APIs and extracting real-world Wasm benchmarks from the web is difficult due to complex host interactions.

To address this challenge, we introduce Wasm-R3, the first record and replay technique for Wasm. Wasm-

R3 transparently injects instrumentation into Wasm modules to record an execution trace from inside the

module, then reduces the execution trace via several optimizations, and finally produces a replay module that

is executable standalone without any host environment—on any engine. The benchmarks created by our

approach are (i) realistic, because the approach records real-world web applications, (ii) faithful to the original

execution, because the replay benchmark includes the unmodified original code, only adding emulation of

host interactions, and (iii) standalone, because the replay benchmarks run on any engine. Applying Wasm-R3

to web-based Wasm applications in the wild demonstrates the correctness of our approach as well as the

effectiveness of our optimizations, which reduce the recorded traces by 99.53% and the size of the replay

benchmark by 9.98%. We release the resulting benchmark suite of 27 applications, called Wasm-R3-Bench, to
the community, to inspire a new generation of realistic and standalone Wasm benchmarks.

CCS Concepts: • Software and its engineering→ Software maintenance tools.

Additional Key Words and Phrases: WebAssembly, Benchmarking, record and replay

ACM Reference Format:
Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel.

2024. Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks. Proc. ACM
Program. Lang. 8, OOPSLA2, Article 347 (October 2024), 27 pages. https://doi.org/10.1145/3689787

∗
Both authors contributed equally to this research.

Authors’ Contact Information: Doehyun Baek, doehyun.baek@kaist.ac.kr, KAIST, Daejeon, South Korea; Jakob Getz, jakob@

getz.de, University of Stuttgart, Stuttgart, Germany; Yusung Sim, yusungsim@kaist.ac.kr, KAIST, Daejeon, South Korea;

Daniel Lehmann, mail@dlehmann.eu, Google Germany GmbH, Munich, Germany; Ben L. Titzer, btitzer@andrew.cmu.edu,

Carnegie Mellon University, Pittsburgh, USA; Sukyoung Ryu, sryu.cs@kaist.ac.kr, KAIST, Daejeon, South Korea; Michael

Pradel, michael@binaervarianz.de, University of Stuttgart, Stuttgart, Germany.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART347

https://doi.org/10.1145/3689787

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0004-0117-1060
HTTPS://ORCID.ORG/0009-0009-7656-2329
HTTPS://ORCID.ORG/0000-0003-3641-593X
HTTPS://ORCID.ORG/0000-0002-4037-5152
HTTPS://ORCID.ORG/0000-0002-9690-2089
HTTPS://ORCID.ORG/0000-0002-0019-9772
HTTPS://ORCID.ORG/0000-0003-1623-498X
https://doi.org/10.1145/3689787
https://orcid.org/0009-0004-0117-1060
https://orcid.org/0009-0009-7656-2329
https://orcid.org/0000-0003-3641-593X
https://orcid.org/0000-0002-4037-5152
https://orcid.org/0000-0002-9690-2089
https://orcid.org/0000-0002-0019-9772
https://orcid.org/0000-0003-1623-498X
https://orcid.org/0000-0003-1623-498X
https://doi.org/10.1145/3689787
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

347:2 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

Table 1. A comparison of record and replay frameworks.

PinPlay [43] JSBench [45] Jalangi [50] Wasm-R3 (this work)
Cross-architecture replay ✓ ✓ ✓

Cross-language replay ✓ ✓

Accurate replay ✓ ✓ ✓

Code format native binaries JavaScript JavaScript WebAssembly

1 Introduction
WebAssembly (Wasm) is a portable, low-level code format designed for compact representation

and efficient sandboxed execution. It is primarily used as a compilation target for various source

languages, including C/C++, Rust, and Kotlin, enabling new classes of software to be run in the

browser. Its low-level instructions closely map to hardware instructions, achieving near-native

performance with straightforward compilation techniques. Wasm augments the web platform,

promising to speed up specific components of broader applications [27], as Wasm code often runs

faster than JavaScript for numeric and memory-intensive tasks.

The complexity and diversity of Wasm engines demand robust, representative benchmarks for

proper tuning. On the web, Wasm code is loaded dynamically from URLs or can be dynamically

generated. Thus, code processing time, interpretation overhead, and JIT compilation to native

code contribute to the overall application run time. To deliver fast startup time and high peak

performance, all of today’s web browsers employ multi-tier Wasm engines. For example, V8 and

SpiderMonkey, the engines used in Chrome and Firefox respectively, use two compiler tiers [1, 10],

while JavaScriptCore in Safari uses an interpreter and two compiler tiers. Non-web Wasm engines

often also use multiple tiers, such as theWizard Research Engine [52] which employs a new in-place

interpreter design and a baseline compiler [53]. Multi-tier engines have complex performance

characteristics and their tiering heuristics need to be tuned on realistic applications to ensure

both startup speed and peak performance are maximized. Tuning these systems requires large,

complex workloads that are representative of real-world applications. In the past, unrepresentative

benchmarks, such as SunSpider for JavaScript [46], have misdirected engineering effort. In one

instance, bad benchmarks led engineers into believing that their performance optimization resulted

in a 13× improvement, when a representative benchmark showed only a 3× improvement [45].

Unfortunately, creating a sufficiently large set of representative Wasm workloads is challenging.

One possible approach might be to port existing native applications to Wasm. However, the lack of

standardized system APIs has made porting or recompiling large native applications difficult, as

efforts like WASI [14] still lack basic facilities, such as signals, sockets, permissions, shared memory,

and device APIs. Moreover, beyond the three major web engines, there are now several non-web

production Wasm engines, which support disparate APIs or only subsets of WASI, making it

difficult to have complex benchmarks with non-trivial system interaction. This deficiency in Wasm

benchmarks compels researchers to either write their own benchmarks or use commonly used

standard benchmark suites with few dependencies, such as PolyBenchC [44] and libsodium [17],

which have already been shown to be unrepresentative of real-world applications [30]. Another

approach might be to extract benchmarks from real-world web applications. However, Wasm-based

web applications consist not only of Wasm modules, but also of a host environment that runs

JavaScript code, interacts with the network, and interacts with the user. These properties make the

web host environment difficult to emulate, which poses a problem for creating benchmark suites

from representative web applications.

Outside of the Wasm context, creating good benchmarks is a long-standing challenge in many

areas of systems. Efforts span virtual machines, operating systems, architecture, vision, and machine

learning [7, 12, 26, 34, 41]. Key considerations are the size and runtime of benchmarks, ease of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:3

compiling and running them, licensing of the underlying source or binaries, diversity of the

suite, representativeness of chosen benchmarks, and standardized measurement and reporting

methodologies. For nascent and developing domains, writing new benchmarks makes sense, but

for established domains with real-world usage, benchmarks should reflect actual applications to

direct tuning efforts to benefit real-world usage. One such benchmark for Wasm is PSPDFKit [25],

which measures the runtime of different actions of a PDF library. Yet, despite being well-crafted,

this benchmark still depends on web APIs and requires significant effort to disentangle it to run

on other engines. Moreover, creating and maintaining benchmarks like this requires significant

manual engineering effort, so few examples exist so far.

If creating and curating benchmarks requires so much manual effort, why not automate the

process? A promising approach is to automatically record and replay executions of real-world

applications. Indeed, record and replay techniques for several systems and languages have been

proposed, as shown in Table 1. However, each of these techniques lacks in a different dimension.

PinPlay [43] supports recording of execution across multiple architectures, but cannot replay across

different architectures. Language-specific efforts like JSBench [45] and Jalangi [50] are portable

across CPUs and OSes, but only serve one language. Recording JavaScript is challenging; JSBench

cannot record all memory loads, which means the execution at replay might diverge from the

original execution [50]. Moreover, these techniques are not directly applicable to Wasm, and to the

best of our knowledge, there currently is no record and replay technique for Wasm.

To address the lack of realistic benchmarks for Wasm, we present Wasm-R3, the first record and

replay technique for Wasm that enables the creation of benchmarks from executions of real-world

applications. Our key insight is that the design of Wasm modules enforces a clear separation

between imported host functionality and the state and behavior inside a Wasm module, and that

this is a natural boundary for encapsulating a benchmark. Our Wasm-R3 approach consists of

three phases: record, reduce, and replay. To record an execution, the approach transparently injects

instrumentation into Wasm modules and records all interactions with the environment. Because

naïvely recording all interactions would result in an impractically large trace, Wasm-R3 reduces the
trace via several optimizations. Finally, Wasm-R3 produces a replay benchmark that contains the

unmodified code of the original Wasm module, but factors out the host environment and replaces

it with a replay mechanism included directly in the replay benchmark.

Recording and replaying at the module boundary is akin to techniques for replaying native

binaries at the system-call layer. Yet unlike native binary replay techniques [13, 42, 43], which

often use memory-checkpointing techniques, the diverse host environments and engine offerings

for Wasm demand a more general technique that works with an uncooperative host environment.

The term “uncooperative” here means that the host environment does not provide any support for

record and replay. Instead, Wasm-R3 works without any modifications of the host environment or

the underlying Wasm engine, but instruments a Wasm module so that it records its own trace.

The benchmarks created with Wasm-R3 are portable, i.e., they work wherever Wasm runs.

Since Wasm is gaining adoption across a broad range of contexts, such as Cloud [38], Edge [22],

and IoT [35], Wasm-R3 must work across architectures, operating systems, runtimes, and host

environments. While some record and replay techniques rely on support by the hardware [56], the

operating system [18], or the language runtime system [49], the vast diversity of Wasm means

that no one of these techniques can apply to all Wasm environments. Instead, Wasm-R3 produces

self-contained, standalone Wasm modules that replay their execution faithfully not only on the

engine used to create the benchmark, but on any engine. Moreover, the produced modules include

the unmodified functions from the original Wasm module, only adding replay functions. Since the

technique is primarily additive, the performance characteristics of the original functions are similar.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:4 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

module ::= function∗ global∗ start? table? memory? import, export ::= "name"

function ::= typefunc (import | code) export∗ code ::= (local typeval)∗ instr∗
global ::= typeval (import | init) export∗ init ::= instr∗

start ::= idxfunc typeval ::= i32 | i64 | f32 | f64
table ::= import? idxfunc∗ export∗ typefunc ::= typeval∗ → typeval∗

memory ::= import? byte∗ export∗ idxfunc | global | local ∈ N

instr ::= typeval .const value | typeval .load | typeval .store | memory.grow
| call idxfunc | call_indirect typefunc | return | · · ·

Fig. 1. Excerpt from the abstract syntax of a simplified form of Wasm [32].

We show in experiments that nearly all benchmarks produced with Wasm-R3 spend the majority

of their execution time in the original functions, not in replay code.

Our evaluation applies Wasm-R3 to real-world web-based Wasm applications, demonstrating

that the approach is effective in creating 27 realistic and standalone benchmarks. We show that our

optimizations effectively reduce the size of the recorded trace (by 99.53%, on average) and the size

of the replay benchmark (by 9.98%, on average). The generated replay code accounts only for 0.20%

of the total execution time, and hence, the extracted benchmarks accurately represent the original

application. We release the benchmark suite created by Wasm-R3 during our evaluation, called

Wasm-R3-Bench, to the community, and envision them to serve as a new standard for realistic and

standalone Wasm benchmarks.

In summary, this paper contributes the following:

• We introduce the first record and replay technique for Wasm. It does not require support

from or modification of the Wasm host environment, hardware, operating system, language

runtime, or source compiler.

• Wedemonstrate the technique via a systemwhich records execution traces of web applications

in any browser and produces replay benchmarks that execute without any host environment—

on any engine.

• We present optimization techniques that reduce trace size and improve replay performance.

For several applications, these optimizations are vital to making our approach feasible at all,

avoiding out-of-memory errors and excessive slowdowns that make benchmarks unrepresen-

tative of the original application’s performance.

• We demonstrate that Wasm-R3 is effective in real-world scenarios by using the approach to

create benchmarks from 27 real-world web applications.

• We make Wasm-R3, associated tools, and the created benchmarks available as open source

https://github.com/sola-st/wasm-r3.

2 Background
In this section, we provide necessary information to describe Wasm-R3. Figure 1 shows an excerpt

of a simplified abstract syntax of Wasm. A Wasmmodule denotes a single binary file and consists of
functions, global variables, an optional start function, and one table and memory. A function takes

parameters, declares local variables, executes body instructions, and returns a sequence of results.

A global variable stores a single value and can be accessed from all functions and can be either

mutable or immutable. A start function is automatically executed when the module is loaded. A

table maps function indices to opaque references to either extern (host) objects or Wasm functions.

Tables can be used for indirect function calls via the call_indirect instruction. A memory represents

a contiguous, byte-addressable, page-sized mutable array of memory. All of these entities can either

be imported from a host execution environment, specifying a module and name pair, or exported

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

https://github.com/sola-st/wasm-r3

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:5

Record

Host Code

JS

Instrumentor

Record
Runtime

Instrumented
Wasm

Instrumented
Wasm

Replay IR
Translation

Replay IR
Optimization

Replay
Module

Generation

Optimized
Replay IR

RIR

Original
Wasm

Reduce Replay

Shadow
Memory

Optimization

Call
Stack

Optimization

Input
Wasm Web
Application

Optimized
Trace

Trace

Output
Replay

Benchmark

Wasm-R3

Original
Wasm

Wasm Replay

Original
Wasm

Host Code

JS

Fig. 2. Overview of the Wasm-R3 main phases and components.

under one or more names, allowing them to be accessed externally. Apart from these entities,

modules can include initialization data for tables and memories.

One concept that plays a key role in Wasm-R3 is embedding of Wasm modules into a host

environment. Host environments load Wasm modules, resolve imports and exports between mod-

ules, and provide host functions as imports to Wasm functions. Host functions can access state

outside modules and perform I/O. While the web was the main motivation for Wasm initially, it was

designed to be embedded in multiple environments [27]. Thus, although the web and JavaScript

embedding was the primary one at launch, WASI [14] has emerged as a set of standard system

APIs in non-web use cases. In principle, unlimited embedders are possible due to the environment-

agnostic design of Wasm. After an embedder loads, verifies, and processes Wasm code, it provides

bindings to a module’s imports and creates the module’s storage. The result is an instance, a run-
time representation that contains the state of the module. A Wasm instance interacts with host

environments by calling imported host functions and being called by exported Wasm functions.

Consideration of host functions introduces another important aspect of Wasm for Wasm-R3:

nondeterminism. Since its inception, one of Wasm’s explicit goals [27] has been to provide deter-

ministic semantics across different hardware. However, there are three exceptions: NaN payloads,

resource exhaustion, and host functions. Some Wasm instructions output non-deterministic NaN

bit patterns in the presence of non-canonical input NaNs, as hardware may behave differently and

canonicalizing all NaNs is deemed too expensive. Resources like memory obviously vary from host

to host and computer to computer, so deep recursion or memory.grow might fail at different points,

and of course a host function can perform I/O or even arbitrary updates to a Wasm instance’s

exported state. In this work, we focus on nondeterminism arising from the interaction with host

functions.

3 Approach
3.1 Overview
Figure 2 gives an overview of Wasm-R3. Given a Wasm-based web application, Wasm-R3 executes

the application, possibly with user input, and produces a benchmark that replays that execution

without any user input. Wasm-R3 consists of three phases: record, reduce, and replay.
The record phase can be considered the frontend of Wasm-R3. It takes a Wasm web application

as an input and produces a trace as a result. We assume that the application consists of Wasm

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:6 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

modules and host code, e.g., in JavaScript. As the first step, Wasm-R3 intercepts the Wasm modules

before they are loaded into the application and instruments the modules with recording logic. Our

instrumentation tracks all function calls and returns as well as all loads and stores to mutable state.

Then, the instrumented Wasm web application is run within the record runtime. While the user

interacts with the web application, each instrumented Wasm module records its own execution

trace. Note that if the input Wasm web application loads multiple Wasm modules, then the record

phase produces one trace for each module.

For complex applications, the traces can grow prohibitively large. Thus, for efficiency, the reduce

phase filters out unnecessary events from the output trace of the record phase. Specifically, it

applies the shadow memory optimization and call stack optimization on the trace. By applying these

optimizations, we only keep the parts of traces that are directly related to the nondeterminism that

occured during execution. Eventually, the reduce phase yields optimized traces as outputs.

The replay phase is the backend of Wasm-R3. It takes the original, uninstrumented Wasm module

and the corresponding optimized trace as inputs and produces a self-contained, executable replay
benchmark. The replay phase does not modify the original module’s functions. Instead, it simply

merges them with generated replay functions to complete the executable replay benchmark. It first

translates the input trace to an intermediate representation, the replay IR. Then, it applies replay
IR optimizations to reduce the size of the IR and ultimately the generated code, ensuring that the

resulting binaries satisfy the size restrictions commonly imposed by engines. Finally, it generates

the replay benchmark from the optimized replay IR. As we discuss in Section 3.4.4, our replay

binary generator supports three different output formats. This approach allows replay benchmarks

to be executed in diverse environments, including web browsers and standalone Wasm runtimes.

The next sections dive into the details of the record phase (Section 3.2), trace reduction techniques

(Section 3.3), and the replay phase (Section 3.4).

3.2 Record Phase
The record phase is responsible for recording the necessary information into a trace for recon-

structing the benchmark that deterministically replays the Wasm web application’s behavior. As

described earlier, non-determinism gets introduced to Wasm applications by functions imported

from the host environment. The record phase thus needs to capture information about function calls

across the boundary between the host environment and the target Wasm module. This includes

side effects to the Wasm module’s mutable state, e.g., the memory section of the Wasm module,

caused by host functions.

The following describes the format of traces (Section 3.2.1) and how these traces are recorded

via instrumentation (Section 3.2.2).

3.2.1 Trace Structure. We define a trace data format that stores all necessary information about

host function execution and their side effects. By defining traces, we effectively decouple the record

phase and replay phase and relay any required data by the fixed format of traces.

Listing 3 provides type definitions of the trace structure. A Trace is a linear sequence of events.

Events correspond to units of behavior that happen during the Wasm app execution and that

possibly involve interaction with host code. There are six types of possible trace events: FuncEntry,

FuncReturn, Call, CallReturn, Load, and Store. The funcidx field in events corresponds to the

function index of the Wasm function. ValType corresponds to Wasm’s four primitive types. A

FuncEntry event corresponds to the start of the function body. This event represents the entrance

to a Wasm-side function, with params storing the arguments given to the function call. Conversely,

a FuncReturn event corresponds to the end of the function body. This event represents the exit from

a Wasm-side function, with values storing the return values of the function. Call and CallReturn

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:7

1 Trace = Seq <Event >
2 Event = FuncEntry | FuncReturn | Call | CallReturn | Load | Store
3 FuncEntry = { funcidx: I32 , params: Seq <ValType > }
4 FuncReturn = { funcidx: I32 , values: Seq <ValType > }
5 Call = { funcidx: I32 }
6 CallReturn = { funcidx: I32 , results: Seq <ValType > }
7 Load = { memidx: I32 ,
8 address: I32 ,
9 value: ValType | I8 | I16 }

10 Store = { memidx: I32 ,
11 address: I32 ,
12 value: ValType | I8 | I16 }
13 ValType = I32 | I64 | F32 | F64

Fig. 3. Type definitions of the trace structure.

events are produced by calling and returning from functions imported by a Wasm module. Both

events store the function index of the callee function, with the CallReturn event additionally

storing the returned values. A Load event corresponds to Wasm load instructions. It stores the

memory index in the memidx field, the address in the address field, and the loaded value in the value

field. Similarly, a Store event stores the memory index, address and stored value of Wasm store
instructions.

In practice, we encode the trace in two formats: a textual format and a binary format. The textual

format is a JSON-like representation of the trace, where each trace event is encoded as an object, and

the whole trace is encoded as a list of such objects. For instance, a Load event may be represented

as Load { memidx: I32(0), address: I32(1000), value: I16(300) }. We use the textual format

for human-reading purposes, such as debugging. In the binary format, each entry starts with a byte

indicating the entry type, so the byte length of the entry is known. We use the binary format in

our implementation to reduce memory usage and for efficient parsing of traces.

3.2.2 Instrumentation. We use an instrumentation-based approach to record interactions between

the Wasm module and the host environment and to store them into traces. To this end, we add

instructions to the Wasm binaries to capture runtime information, such as operand stack values.

Using instrumentation allows us to record traces from arbitrary Wasm-based web applications,

without changing the web browser implementation or depending on features specific to certain

platforms or libraries.

An important property of our instrumentation is that it should not change the original Wasm

module’s semantics. Instead, the instrumented Wasm module serves as a drop-in replacement for

the original Wasm module during recording, with the only behavioral change being the recording

of a trace. To preserve the Wasm module’s semantics during instrumentation, our instrumentation

strategy uses special recorder functions, which take runtime information as input parameters,

records the event into the trace, and return. We define recorder functions for each trace event. For

instance, the recorder function for a load instruction gets memidx, address, value as input arguments

and records the corresponding Load event. Our instrumentation copies the runtime information on

the stack, calls the imported recorder function, and then returns to the original execution flow. By

Wasm’s function call semantics, calling the recorder function will consume only the copied values

from the stack and will not divert the original control flow.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:8 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

0xAA 0xAA 0x00 0x00 0xAA 0xAA 0x00 0x00

Load { addr: 1000, value: I8(0xAA) }

Store { addr: 1002, value: I8(0x01) }

Call { ... }

CallReturn { ... }

Load { addr: 1002, value: I8(0x01) }

Load { addr: 1003, value: I8(0xBB) }

Event Actual Memory

1000 1001 1002 1003 1000 1001 1002 1003

Shadow Memory

0xAA 0xAA 0x00 0x00 0xAA 0xAA 0x00 0x00

0xAA 0xAA 0x01 0x00 0xAA 0xAA 0x01 0x00

0xAA 0xAA 0x01 0x00 0xAA 0xAA 0x01 0x00

0xAA 0xAA 0x01 0xBB 0xAA 0xAA 0x01 0x00

0xAA 0xAA 0x01 0xBB 0xAA 0xAA 0x01 0x00

0xAA 0xAA 0x01 0xBB 0xAA 0xAA 0x01 0xBB

Action

Discard

Change & discard

Discard

Change & keep

Initialization Initialize

Address Address

Keep

Keep

Fig. 4. Example of the shadow memory optimization.

3.3 Reduce Phase
The execution of a Wasm web application can produce millions of host interaction events. A naïve

approach would quickly run out of time and memory before a replay binary is generated. An

essential component to make Wasm-R3 practical is to reduce the size of traces by filtering out

events that contain redundant or unnecessary information. We call this process trace reduction. A
key insight is that we only need to keep trace events related to non-determinism. For instance,

many of the Store events can be deterministically replayed by the original Wasm module itself.

Thus, we can conclude that Store events are not necessary to replay host-side non-determinism.

In this section, we describe two trace reduction techniques: shadow memory optimization (Sec-

tion 3.3.1), which filters out redundant Store and Load events, and call stack optimization (Sec-

tion 3.3.2), which filters out unnecessary Call and CallReturn events.

3.3.1 Shadow Memory Optimization. Most of the Store and Load events in traces are not related to

non-determinism and can thus be removed. It is not necessary to record all Wasm stores for accurate

replay, as the original code performs the exact same sequence of stores as long as the current state

of the program is the same. Thus, it is only necessary to keep stores related to non-deterministic

behavior, i.e., stores that come from the host. Unfortunately, we cannot directly hook into host-side

stores (e.g., when JavaScript writes into WebAssembly memory), since we only instrument the

application’s Wasm code. However, Load events on the Wasm side can observe when values in

linear memory diverge from what was last recorded, which means they were modified by the host.

Inspired by memory optimization techniques in prior work [43, 50], we apply the shadow
optimization technique to remove unnecessary Store and Load events and keep only Load events

that observes the host-side side effect. The technique maintains a data structure called shadow
memory, which keeps track of the written values to the original Wasm module’s linear memory. By

comparing the loaded value of a Load event and the value stored in the shadow memory, we can

determine if the Load event observes the host-side side effect or not, and discard the unnecessary

events.

Figure 4 illustrates how the shadow memory optimization works. For each step of a Wasm

module’s execution, we illustrate the corresponding trace event, the state of the module’s actual

memory, and the state of the shadow memory. For presentation brevity, we omit the irrelevant

fields in the trace events. In the actual memory states, we represent the parts that are read or

written as gray cells. In the shadow memory states, we represent the parts that are modified or

compared with the loaded values as gray cells.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:9

Call { 3 }

FuncEntry { 1 }

Call { 0 }

FuncEntry { 2 }

Event Call Kind Stack

EXT Push INT & keep

FuncEntry { 3 }

FuncReturn { 3 }

CallReturn { 3 }

FuncReturn { 2 }

CallReturn { 0 }

FuncReturn { 1 }

EXT

INT

EXT INT EXT

EXT INT EXT INT

EXT INT EXT INT

EXT INT EXT INT INT

EXT INT EXT INT INT

EXT INT EXT INT

EXT INT EXT INT

EXT INT EXT

EXT INT

Push EXT & keep

Push INT & keep

Discard

Push INT & discard

Pop & discard

Discard

Pop & discard

Pop & keep

Pop & discard

Call Kind

Initialize with EXT

Action

Export call

Import call

Export call

Internal call

Internal call

Internal return

Internal return

Export return

Import return

Export return

Initialization

Fig. 5. Example of the call stack optimization.

We first initialize the shadow memory to contain the same values as the original Wasm module,

by following the Wasm module’s data section definition. The first trace event is a Store of a single-

byte value 0x01 to address 1002. The shadow memory optimization applies the same write to the

shadow memory and discards the event. Then, as a result of the call of an imported function in the

second and third events, the content at address 1003 is mutated. The fourth event is a Load of value

0xAA from address 1000. The optimization first compares the loaded value with the value at the

same address in the shadow memory. Because the values are equal, the optimization discards the

Load event. Similarly, the optimization discards the fifth event. The sixth event is a Load of value

0xBB from address 1003. The optimization compares the loaded value and the shadow memory

value. Here, the values are different, i.e., the value has been mutated as a side effect of interacting

with the host. Our optimization updates the shadow memory value as the loaded value and keeps

the Load event. As a result of shadow memory optimization, only the second, third, and sixth trace

events are remaining, whereas the other, unnecessary Store and Load events are discarded.

3.3.2 Call Stack Optimization. While we record every trace event related to function execution, a

significant portion of them are unrelated to non-determinism. During the execution of a Wasm

module, there are three possible kinds of function calls: export calls, import calls, and internal
calls. Export calls are function calls from the host-side code to functions exported by the Wasm

module. Import calls are function calls from the Wasm module to functions imported from the

host environment. Internal calls are function calls from a function in the Wasm module to another

internal function. Among these three kinds of calls, we do not need to keep track of internal calls

as those can be deterministically replayed by the original Wasm code. Thus, we can safely remove

FuncEntry, FuncReturn, Call, and CallReturn events produced by internal calls. In addition, we can

remove FuncReturn events produced by returning from export calls. This is because the same return

values can be deterministically replayed by the functions defined in the original Wasm module.

We apply call stack optimization to remove trace events produced by internal calls. To distinguish

if an event was produced by an internal call or not, we track function calls in our own call kind
stack. The call kind stack stores INT and EXT objects, which correspond to Wasm-internal contexts

and host-side code contexts, respectively. Similar to conventional function call stacks, our call kind

stack keeps track of calling contexts of trace events. By observing the stack top element and the

next trace event, we can determine if the event was produced by an internal call and discard it.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:10 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

Figure 5 illustrates our call stack optimization process. In this example, we assume that the

function at index 0 is the only function imported from the host environment, and any other

functions are internal functions of the original Wasmmodule. We represent trace events by omitting

unnecesary fields and only annotating the kind of an event and the funcidx field as a number. The

call kind stack column represents the state of the call kind stack at each step. Gray-colored cells

represent objects pushed in the current step, and gray-hatched cells represent objects popped in

the current step. The call kind column represents the kind of the function call produced by the

corresponding trace event and whether the function is being called or returning. The rightmost

column shows which action the call stack optimization performs at each step. The underlined

actions are always performed regardless of the event’s funcidx or the call kind stack top content.

Note that we omitted Store or Load events from the trace for simplicity.

The call stack optimization rules are as follows. We first initialize the call kind stack with a single

EXT object. This represents the outermost host execution context, e.g., JavaScript code which might

call into exported Wasm functions. Then, we iterate over trace events. On a FuncEntry event, we

first observe the stack top. If the top is EXT, then the event was produced by an export call; we keep

the event. If the top is INT, then the event was produced by an internal call; we discard the event.

Finally, we always push INT on the stack. On a Call event, we first check the funcidx field. If the

index corresponds to an imported function, then the event was produced by an import call; we

push EXT on the stack and keep the event. If the index corresponds to an internal function, then

the event was produced by an internal call; we discard the event. On FuncReturn event, we first

pop an object from call kind stack and discard the event. On a CallReturn event, we first check the

funcidx field. If the index corresponds to an imported function, then the event was produced by

returning from an import call; we pop an object from the stack and keep the event. If the index

corresponds to an internal function, then the event was produced by returning from an internal

call; we discard the event.

As illustrated in Figure 5, the call stack optimization discards all events produced by internal

calls. In addition, it discards all FuncReturn events produced by returning from export calls. In the

example, this filters out 6 out of 10 events. The effect on real-world traces is evaluated in Section 5.

3.4 Replay Phase
In the replay phase, Wasm-R3 gets an input trace and generates an excutable, standalone replay

benchmark. In this process, Wasm-R3 uses a replay intermediate representation, or replay IR. We

describe the definition of the replay IR in Section 3.4.1. By first generating a replay IR (Section 3.4.2)

from a trace, we can apply the replay IR optimizations (Section 3.4.3) to reduce the size of the

replay IR. Finally, Wasm-R3 translates this replay IR into one of three different output formats

(Section 3.4.4) and generates a replay binary (Section 3.4.5).

3.4.1 Replay IR. Replay IR is a format designed to represent behaviors of replay functions. Replay
functions are functions that implement the replay mechanism by replaying the return values and

side-effects of host-side functions recorded during the record phase. The goal of the replay phase

is to generate a replay function for each function imported from the original Wasm module. We

utilize the replay IR as a general format that describes the behaviors of replay functions without

depending on specific output formats. Thus, introducing the replay IR effectively divides the problem

of generating replay binaries for multiple output formats into three problems: 1) translating a trace

into a replay IR, 2) optimizing the replay IR, and 3) translating the replay IR to each output format.

We present the definition of the replay IR in Figure 6. An Action corresponds to a single instruction

in the host: ExportCall or MutateMem. An ExportCall represents a function call from the host to an

exported Wasm function. A MutateMem represents a host-side effect of mutating the Wasm module’s

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:11

1 Action := ExportCall | MutateMem
2 ExportCall := { idx: I32 , vals: Seq <ValType > }
3 MutateMem := { idx: I32 , addr: I32 , val: I8 }
4 ValType := I32 | I64 | f32 | f64
5 Context := Seq <Action >
6 Function := Seq <Context >
7 Replay := Map <I32 , Function >

Fig. 6. Type definitions of the replay IR.

1 function translate(optimized_trace: Trace) -> (Replay , Function):
2 let GLOBAL_CONTEXT: Context = new Context ()
3 let ENTRY_FUNC: Function = new Seq(GLOBAL_CONTEXT)
4 let last_context: Ref <Context > = &GLOBAL_CONTEXT
5 let context_stack: Stack <Ref <Context >> = Stack().push(& GLOBAL_CONTEXT)
6 let replay: Replay = Map()
7 foreach event in optimized_trace:
8 switch event:
9 case FuncEntry:

10 context_stack.top().push(new ExportCall(event))
11 case Call:
12 let new_context = new Context ()
13 replay.get(event.funcidx).append (& new_context)
14 context_stack.push(& new_context)
15 last_context = &new_context
16 case CallReturn:
17 last_context = context_stack.pop()
18 case Load:
19 let new_action = new MutateMem(event)
20 if typeof last_context.last() == ExportCall:
21 last_context.splice(last_context.length - 1, new_action)
22 else:
23 last_context.append(new_action)
24

25 return (replay , ENTRY_FUNC)

Fig. 7. Trace to replay IR translation algorithm.

linear memory content. A Context is a sequence of actions, which represents the actions executed

during the context of a single function call. Then, we define a Function, which is a sequence of

contexts. Each Context corresponds to the instructions executed by 𝑖-th invocation of a host-side

function, where 𝑖 is the index of the Context in the Function sequence. Finally, we define Replay

as a mapping from I32 numbers to Functions; the I32 numbers represent the function indices of

the functions imported by the original Wasm module, and the mapped Functions represent the

corresponding replay functions.

3.4.2 From Trace to Replay IR. We present the algorithm to translate a trace into a replay IR in

Figure 7. The algorithm gets an input trace and returns a Replay and a Function. The Replay value

corresponds to the map from the imported function indices to the replay functions. The Function

value corresponds to the entry function to the Wasmmodule; as it does not correspond to a function

index of the original Wasm module, we return it separately from the Replay value.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:12 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

We use five variables in the algorithm: GLOBAL_CONTEXT, ENTRY_FUNC, last_context, context_stack,

and replay. The variable ENTRY_FUNC denotes the entry Function. Because the entry function is

executed exactly once, it has only one Context, which is the variable GLOBAL_CONTEXT. The variable

last_context is a reference to a context; it points to the latest context that new MutateMem actions

should be appended to. The variable context_stack is a stack of references to contexts. We maintain

context_stack to keep track of the current host-side function call and push actions into correct

contexts. We initialize last_context and context_stack with GLOBAL_CONTEXT as the entry function

is the first function executed in the whole Wasm web application execution. Finally, the variable

replay stores the Replay object which will be returned. We assume that each Function object inside

the replay is properly initialized with an empty sequence when we access it.

The goal of the algorithm is to fill the Functions in the replay with Contexts and fill the Contexts,

including GLOBAL_CONTEXT, with Actions, so that the return values correctly mirror the host-side

behaviors recorded in the input trace. To correctly mirror the input trace, 1) a correct Actionmust be

created for each event and 2) the created Actionmust be inserted to a correct Context. To do this, the

algorithm uses case analysis on each event and properly updates last_context and context_stack.

For a FuncEntry event, it creates an ExportCall action and pushes it to the Context of the current

function. We find the Context of the current function by referring to the top of context_stack in

this case. For a Call event, it creates a new Context object, namely new_context, for this import

call. This new Context object is appended to the Function at the event.funcidx index of replay.

Then, it pushes the reference to new_context onto context_stack and updates last_context. For

a CallReturn event, the current function call is returned, so it pops from context_stack. Then,

by updating last_context to the popped Context object, when we append MutateMem objects to

last_context, it correctly mirrors the fact that the side effect observed by the Wasm-side execution

is caused by the most recently returned host-side execution. Lastly, for a Load event, it creates a

new MutateMem action reflecting the side effect on the memory. Then, to insert this action into the

correct position, it inspects the last element of last_context. In most of the cases, it appends the

new MutateMem at the last position of last_context. However, if the last action on the last_context

is an ExportCall action, this means that the mutation happened before the corresponding export

call and the side effect was later observed. Thus, it inserts the new MutateMem action right before

the ExportCall action.

3.4.3 Replay IR Optimizations. We apply optimizations on replay IRs to reduce their size. Before

we generate an output replay benchmark, we reduce the replay IR size so that the size of the replay

binary is also reduced. By reducing the size of the replay binary, we address three practical issues.

• First, we produce valid replay binaries that are accepted by web browser engines. Production

web engines impose a common restriction on the size of functions inside the Wasm binary
1
.

By naïvely translating Function objects in a replay IR into Wasm functions, the size of

replay functions may exceed the function size limit. To solve this issue, we employ replay

IR optimizations to reduce the number of instructions of each replay function and produce

smaller Wasm replay functions.

• Second, we shorten the compilation time of the replay binaries, which correlates with the

runtime performance of the replay benchmark. A previous study [52] has found out that

the compilation time of Wasm modules significantly impacts the performance evaluation of

a Wasm engine. Since our replay IR optimization techniques reduce the overall size of the

replay binary, we can reduce the impact of compilation time on the performance evaluation

of Wasm engines.

1
See, e.g., https://github.com/v8/v8/blob/master/src/wasm/wasm-limits.h.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

https://github.com/v8/v8/blob/master/src/wasm/wasm-limits.h

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:13

1 MutateMem {idx: 0, addr: 0, val: \08}

2 MutateMem {idx: 0, addr: 1, val: \07}

3 MutateMem {idx: 0, addr: 2, val: \06}

4 MutateMem {idx: 0, addr: 3, val: \05}

5 MutateMem {idx: 0, addr: 4, val: \04}

6 MutateMem {idx: 0, addr: 5, val: \03}

7 MutateMem {idx: 0, addr: 6, val: \02}

8 MutateMem {idx: 0, addr: 7, val: \01}

9 MutateMem {idx: 0, addr: 8, val: \00}

(a) Replay IR before the optimization.

1 BulkMutateMem {

2 idx: 0,

3 addr: 0,

4 val: "\08\07\06\05\04\03\02\01\00"

5 }

(b) Replay IR after the optimization.

Fig. 8. Memory write merge optimization example.

• Third, we reduce the execution time of the replay benchmarks by reducing the number of

instructions in the final replay function bodies. We achieve this effect by merging mulitple

instructions into a single instruction while preserving the function behavior.

We describe our two replay IR optimization techniques: memory write merge and function split.

Memory Write Merge Optimization. By inspecting replay IRs, we found that Wasm often involves

writing data to consecutive bytes in the Wasm linear memory. Inspired by the memory.init instruc-
tion, which executes bulk writes on multiple bytes, we design thememory write merge optimization

that merges multiple MutateMem actions on consecutive addresses in a single action. To represent

the bulk write, we introduce a new action BulkMutateMem. The BulkMutateMem action has the same

syntax as MutateMem, except that the val field is a number type with no size limit. In theory, the

memory write merge optimization can merge an unlimited number of MutateMem actions into a

single BulkMutateMem action. We translate the BulkMutateMem action into the memory.init Wasm

instruction.

Figure 8 illustrates an example of applying the memory write merge optimization. The left-side

figure is a part of the replay IR before applying the optimization. It is a sequence of eight MutateMem

actions on consecutive bytes. The optimization merges the eight seperate writes in eight MutateMem

actions into a single, 8-byte value in the BulkMutateMem action.

Function Split Optimization. As mentioned earlier, production web browser engines impose a

common restriction on the size of a single Wasm function. We observed that some Function objects

in replay IR exceed that maximum size limit. These Function objects represent functions frequently

called in the Wasm web application execution. For instance, we observed a utility function that

performs a conversion of float64 values to integers corresponding to millions of actions.

To prevent our output replay binaries from being invalid, we employ function split optimizations
on such large Function objects. In the function split optimization, we outline some parts of a

Function object into other Function objects and replace them with calls to the new Function objects.

By setting an appropriate threshold of the Function object size, we maintain each Function object

size below the maximum Wasm function size limit imposed by the web engines.

3.4.4 Output Formats. The replay benchmarks generated by Wasm-R3 in the replay phase consist

of three parts. First, the original Wasm module of the application. Second, the replay code, which
replicates the behavior of the host environment during the record phase. Third, the setup and
instantiation code, which links the first two parts together. The setup and instantiation code fulfills

the imports of the original Wasm module with functions from the replay code and starts the replay

benchmark. The last two parts are generated from the replay IR.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:14 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

While the original application code is always in Wasm, we can make different choices for the

replay code and the setup and instantiation code. If the replay code is in JavaScript, the setup and

instantiation code should also be in JavaScript (option “JS"). When the replay code is in Wasm, we

can either statically link the replay code with the original Wasmmodule into a single, self-contained

binary (option “self-contained Wasm"), or generate JavaScript setup and instantiation code that

loads the replay code and the original Wams module separately (option “dynamic linking"). In the

dynamic linking option, the actual linking between the original Wasm module and the replay code

happens during the instantiation at runtime.

All three output formats are sensible choices. A self-contained Wasm replay is the easiest option

for downstream consumers of the benchmark, as it can be executed in any Wasm engine, including

Wasm standalone runtimes that do not have a JavaScript host environment. We also expect a self-

contained Wasm is the most performant way for replay because it does not involve function calls

across the Wasm module and JavaScript host environments. Hence, we choose the self-contained

Wasm format by default and use it for evaluation in Section 5. However, when the replay code is

kept in a separate Wasm module or in JavaScript, this can be useful to benchmark cross-language

or multi-module interactions. In Wasm-R3, we provide options to select from three output formats,

so users can generate replay benchmarks according to their use cases.

3.4.5 From Replay IR to Output Formats. Once we have a replay IR, the generation of an executable,

standalone replay benchmark is carried out in a straightforward, single-pass manner. For each

Function in the replay IR, we generate a replay function according to the outputmode. For JavaScript,

this would be a JavaScript function, and for Wasm, this would be a Wasm function. We then define

a global counter variable for each function to keep track of the current Context. The body of the

generated function consists of a switch statement in the respective language that maps different

counter values to different sequences of instructions, followed by a part that increments the counter

for each invocation. Each sequence of instructions that are translated from a Context is a series of

simple line-by-line translations of Actions in the replay IR to their corresponding instructions in

the langauge. For example, MutateMems are translated to their corresponding store instructions.

4 Implementation
In this section, we describe notable implementation details of Wasm-R3.

Implementation Summary. The implementation of Wasm-R3 amounts to roughly 2,200 lines of

TypeScript and 2,200 lines of Rust, divided into the frontend (the record and reduce phases) and the

backend (the replay phase). The code is released under the MIT License and is publicly available

at https://github.com/sola-st/wasm-r3. Wasm-R3 utilizes two third-party libraries: Wasabi [32],

an instrumentation framework for Wasm, which we use to inject calls to recorder functions and

to store corresponding trace events, and Binaryen [21], a compiler toolchain and infrastructure,

which we use to optimize replay binaries.

Proxy. Rather than intrusively modify web browsers (or Wasm engines in the web browsers),

we employ a proxy to intercept Wasm and JavaScript code. Modern web browsers expose the

capability to intercept and modify network requests and responses. For instance, Chromium pro-

vides the DevTools Protocol [23] for this purpose. The proxy component leverages this capability

to intercept JavaScript files and patch
2
the function definitions of Wasm module instantiation

APIs: WebAssembly.Instance, WebAssembly.instantiate, and WebAssembly.instantiateStreaming.

The new instantiation functions intercept the Wasm binary before instantiation and inject in-

strumentation before forwarding them to the underlying Wasm engine. We utilize the Playwright

2
Of course, monkey-patching JavaScript has robustness issues, and some modules can be missed.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

https://github.com/sola-st/wasm-r3

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:15

library [40] to implement the proxy across all major web browsers. This proxy approach allows

Wasm-R3 to instrument every Wasm module on-the-fly without modifying the browser implemen-

tation.

Mutable State in Wasm. In Wasm, there are three kinds of mutable states in instances: globals,

tables, and memories. Globals are mutable or immutable, single-value storage that can be imported

and exported from Wasm modules. Tables store opaque references to host objects and Wasm

functions. Since the call_indirect instruction indirects through a table, mutable tables can be used

to implement dynamic linking via indirect calls. Like Wasm linear memory, globals and tables can

be modified by the host environment if exported from an instance. Thus, in order to replay all

nondeterminism from the host, we also need to record mutation of globals and tables. Although

not described in detail here, Wasm-R3 also records and replays global and table mutations by

instrumenting global.get and table.get instructions, respectively. Similarly, it also employs shadow

memory optimizations for globals and tables to distinguish mutations from the host environment

and the module itself.

Simultaneous Record and Reduce. In our implementation of Wasm-R3, the reduce phase is partially

overlapped with the recording phase; the reduce phase filters out most redundant trace events

even before they are stored in a trace. This is done primarily by the shadow memory optimization

and the call stack optimization algorithms, which are applied online in the recorder functions.

For example, a load instruction simply reads both the shadow and real memories and suppresses

generating a load event if the two values are the same, which implies that the program either

writes the value or has already observed a host-written value. Similarly, the call stack optimization

algorithm is included directly in the recorder function. Filtering events requires more checks, but

is less expensive than generating events and then later filtering them out, which naturally saves

space but also reduces the overall recording overhead.

5 Evaluation
We evaluate Wasm-R3 by addressing the following four research questions.

• RQ1. Applicability: To what extent does Wasm-R3 apply to real-world web applications and

different Wasm engines?

• RQ2. Performance: How much overhead does Wasm-R3’s record phase introduce? What are

the performance characteristic of the replay benchmarks?

• RQ3. Effectiveness of trace reduction: To what extent do our trace reduction techniques

reduce the size of the recorded traces?

• RQ4. Effectiveness of replay optimization: By how much do our replay optimization

techniques reduce the size of replay binaries? How do the optimizations impact the performance

characteristics of the replay benchmarks?

5.1 Experimental Setup
We collect URLs of real-world Wasm web applications, which we define to be interactive webpages

that load at least one Wasm module, to serve as our evaluation targets. To find such applications, we

use two websites as starting points: Made with WebAssembly [55], which is an open-source website

that showcases projects created with Wasm, and Awesome-Wasm [20], an open-source repository

that lists Wasm-related webpages. We gathered URLs for Wasm web applications from these

webpages by first manually crawling them and their subpages and filter out inaccessible websites, e.g.

404 or that require authentication, non-interactive webpages, and pages where the relevant Wasm

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:16 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

APIs, e.g. WebAssembly.Instance, WebAssembly.instantiate or WebAssembly.instantiateStreaming,

are not used in any script.

For repeatability, we use test scripts that automatically interact with each website using the

Playwright library [40] by mimicking common use cases. Each script executes multiple user actions,

such as clicking a button or typing text into an input form. For websites that use multiple Wasm

modules, we write multiple test scripts, each focusing on a different module. These scripts run

against live sites, which of course evolve over time and automation breaks. In fact, the difficulties of

reliably and reproducibly automating the execution of Wasm web applications is a key motivation

of Wasm-R3, which ultimately produces completely self-contained Wasm benchmarks.

While writing test automation scripts, we exclude some applications from our evaluation targets

that have one or more of the following problems:

(1) Throw errors even when used without Wasm-R3.

(2) Require external files or privileged information. For example, we remove a GameBoy emulator

[8] because it requires a GameBoy ROM file that we could not supply.

(3) Take unreasonably long time to download required data from the network. This affects several

video game ports, such as Arxwasm [15] and D3wasm [16].

(4) Though statically appear to use Wasm, don’t dynamically load any Wasm modules. For

example, we exclude Wasmboy [19] because we could not automate it to load Wasm.

(5) Require automation scripts that would interact with the HTML canvas element. As the

Playwright library does not provide APIs to recognize images inside a canvas element, we

cannot perform anymeaningful interactions with such applications beyond randomly clicking

inside the canvas.

(6) Exhibit flakiness in the automation scripts without any meaningful errors. For example, we

exclude the application a tic-tac-toe game [37], because it sometimes fails to load the game.

As a result, we compiled 43 URLs to Wasm web applications. Table 2 summarizes our evaluation

targets. Our evaluation targets are composed of 9 programming language applications, 8 Wasm

benchmarks, 6 video games, 4 graphics applications, 3 media applications, 2 mathematical computa-

tion applications, 2 simulator applications, and 1 ML(machine learning) application. We claim these

represent real-world Wasm web applications as we gathered them from well-known, open-source

compilations of Wasm web applications and include applications from various domains.

We evaluate the benchmarks created with Wasm-R3 on three web browser engines (Spider-

Monkey [3] version 125.0b7, V8 [4] version 12.5.149, and JavaScriptCore [2] version 277039) and

three standalone Wasm engines (Wizard [51] version 24𝛼 .1998, Wasmtime [6] version 19.0.1, and

Wasmer [5] version 4.2). We use the standalone-Wasm output format of the benchmarks for the

entire evaluation (Section 3.4.4), as they can be executed across both web browser engines and

standalone Wasm engines. To run a standalone-Wasm benchmark in a browser, we use a simple

JavaScript wrapper that loads the replay benchmark and calls its entry function.

Our experiments are conducted on a machine running Ubuntu 22.04.1, equipped with an Intel

Core i9-13900k CPU and 192GB of DRAM. With the Intel Core i9-13900k, we disable E-cores and

use only P-cores, and set the Linux CPU frequency governor to performance mode for consistent

results. We use Chromium 123.0.6312.4 as the browser for the proxy component in the record phase.

For the experiments in RQ2 and RQ4, we repeat each measurement ten times for each target.

5.2 RQ1. Applicability
We evaluate the applicability of Wasm-R3 in two ways. First, we evaluate its ability to produce

accurate benchmarks from various real-world Wasm web applications, which we call the accuracy

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:17

Table 2. List of evaluation target Wasm web applications.

Name URL Domain Success
boa https://boajs.dev/boa/playground Progr. lang. ✓

bullet https://magnum.graphics/showcase/bullet Simulator ✓

commanderkeen https://www.jamesfmackenzie.com/chocolatekeen Video game ✓

factorial https://www.hellorust.com/demos/factorial/index.html Mathematics ✓

ffmpeg https://w3reality.github.io/async-thread-worker/examples/wasm-ffmpeg/index.html Media ✓

fib https://takahirox.github.io/WebAssembly-benchmark/tests/fib.html Benchmark ✓

figma-startpage https://www.figma.com Graphics ✓

fractals https://raw-wasm.pages.dev Graphics

funky-kart https://www.funkykarts.rocks/demo.html Video game ✓

game-of-life https://playgameoflife.com Video game ✓

gotemplate https://gotemplate.io Progr. lang.

guiicons https://raylibtech.itch.io/rguiicons Utility ✓

hnset-bench https://raw.githack.com/gorhill/uBlock/master/docs/tests/hnset-benchmark.html Benchmark

hydro https://cselab.github.io/aphros/wasm/hydro.html Simulator ✓

image-convolute https://takahirox.github.io/WebAssembly-benchmark/tests/imageConvolute.html Benchmark

jqkungfu http://jqkungfu.com Progr. lang. ✓

jsc https://mbbill.github.io/JSC.js/demo/index.html Progr. lang. ✓

lichess https://lichess.org/analysis Video game

livesplit https://one.livesplit.org Utility

mandelbrot http://whealy.com/Rust/mandelbrot.html Graphics ✓

multiplyDouble https://takahirox.github.io/WebAssembly-benchmark/tests/multiplyDouble.html Benchmark ✓

multiplyInt https://takahirox.github.io/WebAssembly-benchmark/tests/multiplyInt.html Benchmark ✓

ogv https://brionv.com/misc/ogv.js/demo Media

onnxjs https://microsoft.github.io/onnxjs-demo/# ML

pacalc http://whealy.com/acoustics/PA_Calculator/index.html Mathematics ✓

parqet https://google.github.io/filament/webgl/parquet.html Graphics ✓

pathfinding https://jacobdeichert.github.io/wasm-astar Benchmark ✓

playnox https://playnox.xyz Video game

rfxgen https://raylibtech.itch.io/rfxgen Utility ✓

rguilayout https://raylibtech.itch.io/rguilayout Utility ✓

rguistyler https://raylibtech.itch.io/rguistyler Utility ✓

riconpacker https://raylibtech.itch.io/riconpacker Utility ✓

roslyn http://roslynquoter-wasm.platform.uno Progr. lang.

rtexpacker https://raylibtech.itch.io/rtexpacker Utility ✓

rtexviewer https://raylibtech.itch.io/rtexviewer Utility ✓

rustpython https://rustpython.github.io/demo Progr. lang.

sandspiel https://sandspiel.club Video game ✓

sqlgui http://kripken.github.io/sql.js/examples/GUI Progr. lang. ✓

sqlpractice https://www.sql-practice.com Progr. lang.

takahirox https://takahirox.github.io/WebAssembly-benchmark Benchmark

timestretch https://superpowered.com/js-wasm-sdk/example_timestretching Media

waforth https://el-tramo.be/waforth Progr. lang.

wheel https://boyan.io/wasm-wheel Benchmark

experiment (Section 5.2.1). Second, we evaluate to what extent the produced benchmarks execute

successfully across different Wasm engines, which we call the portability experiment (Section 5.2.2).

5.2.1 Accuracy Experiment. We evaluate how accurately Wasm-R3’s replay benchmarks match

their execution in Wasm web applications. The term “accurate” here means that the original web

application and the corresponding replay benchmarks show the same behavior. We assess accuracy

by recording traces of both executions and test if both traces are exactly the same.

Table 2 shows for each application whether we could successfully produce accurate replay

benchmarks. In total, Wasm-R3 produces accurate replay benchmarks for 27 out of 43 applications.

These applications cover a wide range of domains, including programming language applications,

graphics applications, and video games. To the best of our knowledge, the resulting set of bench-

marks is the first executable benchmark suite of real-world Wasm web applications. We refer to

these benchmarks asWasm-R3-Bench and, unless mentioned otherwise, use them throughout the

rest of the evaluation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

https://boajs.dev/boa/playground
https://magnum.graphics/showcase/bullet
https://www.jamesfmackenzie.com/chocolatekeen
https://www.hellorust.com/demos/factorial/index.html
https://w3reality.github.io/async-thread-worker/examples/wasm-ffmpeg/index.html
https://takahirox.github.io/WebAssembly-benchmark/tests/fib.html
https://www.figma.com
https://raw-wasm.pages.dev
https://www.funkykarts.rocks/demo.html
https://playgameoflife.com
https://gotemplate.io
https://raylibtech.itch.io/rguiicons
https://raw.githack.com/gorhill/uBlock/master/docs/tests/hnset-benchmark.html
https://cselab.github.io/aphros/wasm/hydro.html
https://takahirox.github.io/WebAssembly-benchmark/tests/imageConvolute.html
http://jqkungfu.com
https://mbbill.github.io/JSC.js/demo/index.html
https://lichess.org/analysis
https://one.livesplit.org
http://whealy.com/Rust/mandelbrot.html
https://takahirox.github.io/WebAssembly-benchmark/tests/multiplyDouble.html
https://takahirox.github.io/WebAssembly-benchmark/tests/multiplyInt.html
https://brionv.com/misc/ogv.js/demo
https://microsoft.github.io/onnxjs-demo/#
http://whealy.com/acoustics/PA_Calculator/index.html
https://google.github.io/filament/webgl/parquet.html
https://jacobdeichert.github.io/wasm-astar
https://playnox.xyz
https://raylibtech.itch.io/rfxgen
https://raylibtech.itch.io/rguilayout
https://raylibtech.itch.io/rguistyler
https://raylibtech.itch.io/riconpacker
http://roslynquoter-wasm.platform.uno
https://raylibtech.itch.io/rtexpacker
https://raylibtech.itch.io/rtexviewer
https://rustpython.github.io/demo
https://sandspiel.club
http://kripken.github.io/sql.js/examples/GUI
https://www.sql-practice.com
https://takahirox.github.io/WebAssembly-benchmark
https://superpowered.com/js-wasm-sdk/example_timestretching
https://el-tramo.be/waforth
https://boyan.io/wasm-wheel

347:18 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

Due to the complexity of the web and limitations of the libraries that Wasm-R3 uses, the approach

fails to produce accurate benchmarks for the remaining 16 applications. We categorize the failures

into three groups:

• Implementation limitations (5 cases). Some failures are due to the known limitations of our

implementation. For image-convolute, the trace contains over a million calls to a single host

function. The current function split optimization works only inside a single context in the replay

IR, which prevents the application of the optimization in this case; playnox fails for the same

reason. We believe this would be resolved with a more advanced function split optimization

that works across multiple contexts. For timestretch, hnset-bench, and wheel, our proxy

logic does not seem to work the use cases of the applications.

• Dependency limitations (4 cases). Some failures are caused by the limitations of the libraries that

Wasm-R3 uses. Wasabi fails to instrument fractals and lichess, because they use the SIMD

proposal, and livesplit, because it uses the threads proposal, which are not yet supported by

Wasabi. Binaryen fails onwaforth because the library does not support block-type parameters.
3

• Unknown problems (7 cases). For the remaining 7 applications, we could not determine the cause

of the failure. We are currently investigating their cause.

5.2.2 Portability Experiment. The following experiment evaluates to what extent the replay bench-

marks generated by Wasm-R3 execute successfully across different Wasm engines. We run the

portability experiment with all 27 accurate replay benchmarks, trying to run them on three web

browser engines and three Wasm standalone engines (Section 5.1). When running the portability

experiment with web browser engines, we experiment with different optimization tiers of each

engine. We count the experiment as successful if the replay benchmark runs successfully on all

optimization tiers of the engine. Likewise, as the Wizard and Wasmer engines also provide different

optimization tiers, we also experiment with them. All replay benchmarks successfully run across

all execution tiers of the three web browser engines and three Wasm standalone engines. In sum-

mary, our experiments show that Wasm-R3 is applicable in various usage scenarios. In particular,

we produce a suite of 27 replay benchmarks from real-world Wasm web applications, and these

benchmarks run successfully on various Wasm engines.

5.3 RQ2. Performance
We evaluate the performance of Wasm-R3 from two perspectives. First, we assess the amount of

overhead introduced during the recording phase (Section 5.3.1). Keeping the overhead low is crucial

to minimize disruption to user interactions during the recording phase. Second, we examine the

performance characteristics of the replay benchmarks by measuring the time spent in code of the

original Wasm module and in code added by Wasm-R3 to enable replay (Section 5.3.2). For a replay

binary to be useful for evaluating the performance of Wasm engines, the majority of time should

be spent in the original Wasm code.

5.3.1 Record Overhead Experiment. The following experiment evaluates the overhead of Wasm-

R3’s record phase. We measure the total CPU cycles spent by the Chromium renderer process of

the target application using the Linux perf tool. Among the 27 replay binaries in Wasm-R3-Bench,

we exclude parqet in this experiment as our record overhead measurement infrastructure does

not support its use of the WebGL library. To compute the recording overhead, we compare the

performance of the application when running with an uninstrumented and an instrumented Wasm

module. As in RQ1, we use our UI-level test scripts to simulate user interactions. Because the test

scripts are at the UI level, there is a risk of having slightly different workloads in different runs.

3
https://github.com/WebAssembly/binaryen/issues/6407

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

https://github.com/WebAssembly/binaryen/issues/6407

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:19

bo
a

rfx
ge

n jsc
fu

nk
y-

ka
rt

sa
nd

sp
ie

l
ffm

pe
g

jq
ku

ng
fu

m
an

de
lb

ro
t

co
m

m
an

de
rk

ee
n

rg
ui

st
yl

er
rte

xp
ac

ke
r

bu
lle

t
rte

xv
ie

we
r

pa
th

fin
di

ng fib
rg

ui
la

yo
ut

gu
iic

on
s

hy
dr

o
ric

on
pa

ck
er

fig
m

a-
st

ar
tp

ag
e

m
ul

tip
ly

In
t

m
ul

tip
ly

Do
ub

le
pa

ca
lc

sq
lg

ui
fa

ct
or

ia
l

ga
m

e-
of

-li
fe

0

4

8

12

16

1

CP
U

Cy
cle

s S
lo

wd
ow

n

Fig. 9. Relative increase in CPU cycles spent by the Chromium renderer process over uninstrumented
application (2.0 = twice as many cycles, 1.0 = same).

To mitigate this risk, and also to account for the inherent noise of performance measurements,

we repeat each measurement across ten runs and compute the arithmetic mean of the spent

CPU cycles.
4
Then, we compute the ratio of the arithmetic mean of the CPU cycles spent by the

instrumented application to the arithmetic mean of the CPU cycles spent by the uninstrumented

application.

Figure 9 shows the overhead introduced by the record phase of Wasm-R3. We measured the

CPU cycles spent executing JavaScript and Wasm code with and without instrumentation. While

the overhead varies across applications, the slowdown is generally modest, with a median of

approximately 3.79×, a geometric mean of 3.40×, and all but one application exhibiting less than

8.18× overhead. In practice, this overhead is acceptable; applications are still interactive and users

can record realistic usage scenarios with Wasm-R3.

5.3.2 Replay Characteristics Experiment. We now evaluate the performance characteristics of the

replay benchmarks created by Wasm-R3. Wasm-R3 repackages the functions of the original Wasm

module with replay functions, creating a standalone executable. While any Wasm workload can

serve as a benchmark, the overall goal is to capture the performance characteristics of the original
Wasm code. A key metric is then the proportion of the work spent in the original functions versus

the replay functions. To answer this question, we first measure the CPU cycles per function using

the fprofile monitor of Wizard. Then, we distinguish whether the function belongs to the original

Wasm module or the replay functions. Summing the CPU cycles spent in each group, we can

calculate the total cycles spent in the original Wasm module and the replay functions. We repeat

the experiment ten times to get the arithmetic mean value of the CPU cycles to reduce variance in

the measurements.

Figure 10 displays the results of this experiment. The upper portions of the bars in light gray color

represent the percentage of the cycles spent in the functions from the original Wasm module, while

the lower portions in red color represent the percentage of the cycles spent in replay functions.

Ideally, a benchmark would spend 100% of the cycles in the original Wasm code and 0% in replay. For

the benchmarks we gathered, we find the geometric mean of the cycles spent in the replay binary to

be 0.20%. Half of the benchmarks spend less than 1.53%, all but one less than 24%, and the maximum

4
For fib, we compute the arithmetic mean of nine runs only, because one recording run failed due to flakiness.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:20 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

co
m
m
an

de
rk
ee

n
pa

rq
ue

t
fig

m
a-
st
ar
tp
ag

e
jq
ku
ng

fu
ffm

pe
g

sq
lg
ui

pa
th
fin

di
ng

ga
m
e-
of
-li
fe

rte
xv
ie
we

r
rte

xp
ac
ke
r

hy
dr
o

fa
ct
or
ia
l

pa
ca
lc

fu
nk
y-
ka
rt jsc

ric
on

pa
ck
er

rg
ui
st
yl
er

rg
ui
la
yo

ut
gu

iic
on

s
sa
nd

sp
ie
l

bu
lle
t

bo
a

rfx
ge

n
m
an

de
lb
ro
t

m
ul
tip

ly
Do

ub
le

m
ul
tip

ly
In
t

fib

0.0

0.2

0.4

0.6

0.8

1.0
Po
rti
on

Original
Replay

Fig. 10. Proportion of the execution spent in the original Wasm modules (light gray) and replay functions
(red), in CPU cycles.

cycles spent in the replay part is 39%. The proportion varies according to the frequency and nature

of the application’s interactions with the host. Yet, recall that our technique only requires the replay

return values and observed side-effects (e.g. memory modifications) from host calls. Side-effects

from the host that are never observed by the application, as well as host functions that only read

application memory, do not generate trace events. This leads to the somewhat counter-intuitive

result that applications that produce a lot of data for the host (e.g. rendering frames for a game)

actually do not generate many trace events; they generate (relatively small) trace events when the

user interacts with the game.

Thus, in summary, our results show that the modules in Wasm-R3-Bench mostly exercise the

behavior of the original, real-world applications, making these executions suitable for evaluating

the performance of Wasm engines.

5.4 RQ3. Effectiveness of Trace Reduction
We evaluate how effective Wasm-R3’s trace reduction techniques (Section 3.3) are in reducing

the size of the recorded traces. We record traces with four variants of the approach: 1) without

any trace reductions, 2) only with the shadow memory optimization, 3) only with the call stack

optimization, and 4) with both optimization techniques. The fourth variant corresponds to the full

Wasm-R3 approach. We target all 27 modules in Wasm-R3-Bench, measure the size of the traces

produced by the four variants, and report the differences in them. By “the size of a trace,” we here

mean the number of trace events recorded by Wasm-R3.

Table 3 shows the results. Both trace reduction techniques are effective in reducing the trace

size. On average, the shadow memory optimization and the call stack optimization reduce traces to

27.20% and 38.17% of the original trace size, respectively. Together, the two optimizations reduce

the traces to only 0.47% of the original size, i.e. a more than 200× reduction. In the development

process, before optimization, Wasm-R3 initially failed to produce traces for most applications due to

the lack of memory or timeouts. However, after applying our trace reduction techniques, Wasm-R3

filters out a large portion of trace events and succeeds to produce traces for real-world applications.

Hence, we believe that our trace reduction techniques are essential to produce replay benchmarks

from real-world Wasm web applications.

From the table, three interesting cases emerge: multiplyDouble, multiplyInt, and fib. For

multiplyDouble and multiplyInt, the optimizations do not remove any trace events. This is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:21

Table 3. Trace reduction experiment results.

Name Trace (# Events)
No-opt Shadow-opt Call-stack-opt All-opt

boa 1422316 41.36% 58.65% 0.01%

bullet 60731762 14.27% 85.75% 0.01%

commanderkeen 190191109 21.12% 79.12% 0.23%

factorial 1483 35.87% 66.01% 1.89%

ffmpeg 83 36.14% 87.95% 24.10%

fib 4912039416 100.00% 0.00% 0.00%

figma-startpage 3065 61.01% 54.71% 15.73%

funky-kart 170064681 29.63% 71.86% 1.48%

game-of-life 2178 16.71% 85.31% 2.02%

guiicons 87593617 8.48% 91.53% 0.01%

hydro 4494 37.96% 62.35% 0.31%

jqkungfu 83 48.19% 80.72% 28.92%

jsc 1829171 69.12% 35.63% 4.75%

mandelbrot 151019238 0.90% 99.21% 0.11%

multiplyDouble 24 100.00% 100.00% 100.00%

multiplyInt 24 100.00% 100.00% 100.00%

pacalc 194039 43.05% 58.95% 2.00%

parqet 16736 54.92% 60.40% 15.32%

pathfinding 30798960 35.64% 64.44% 0.08%

rfxgen 143104877 6.79% 93.21% 0.00%

rguilayout 50654126 8.77% 91.25% 0.02%

rguistyler 63933807 8.62% 91.40% 0.02%

riconpacker 1078843 10.12% 90.10% 0.22%

rtexpacker 10 60.00% 100.00% 60.00%

rtexviewer 10 60.00% 100.00% 60.00%

sandspiel 300347531 18.65% 81.38% 0.03%

sqlgui 250114 39.27% 63.05% 2.32%

Geomean 27.20% 38.17% 0.47%

because multiplyDouble and multiplyInt do not perform any loads or calls during their execution,

i.e., there is nothing for our techniques to optimize. Instead, all the events in the traces are FuncEntry

events directly followed by FuncExit events. These functions use a loop internallywithin an exported

function to repeat the multiplications. In contrast, the results for fib show that almost all trace

events are filtered out, with only 24 out of 4.9 billion events remaining. This is because fib contains

a recursive function that calls itself many times. Most of the events are Call events that get filtered

out by the call stack optimization.

5.5 RQ4. Effectiveness of Replay Optimization
In this section, we evaluate the effectiveness of replay optimization techniques introduced in

Section 3.4.3. We first conduct a simple comparison of the replay binary size of replay benchmarks

1) without any replay optimizations, 2) only with the memory write merge optimization, 3) only

with the function split optimization, and 4) with both optimization techniques. We found that

the function split optimization does not affect the binary size, while the memory write merge

optimization reduces the replay binary size by 9.98%. Then, for the 27 replay benchmarks in Wasm-

R3-Bench, we carried out an ablation study to evaluate the effectiveness of the two optimizations.

We call this the replay optimization experiment. In the replay optimization experiment, we measure

two kinds of times: load and validation time and execution time. The load and validation time is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:22 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

Table 4. Replay optimization experiment results.

Name Load+Validation time (𝜇s) Execution time (𝜇s)
No Split Merge All No Split Merge All

boa 242742.4 102.87% 108.98% 106.05% 47262.4 101.87% 104.92% 101.62%

bullet 27313.8 97.06% 100.47% 104.62% 358420.8 101.55% 113.76% 127.99%

commanderkeen 270972.2 116.73% 92.19% 111.92% 18778942.4 100.96% 97.95% 97.81%

factorial 2517.3 94.14% 96.90% 99.63% 64.7 97.84% 97.30% 99.85%

ffmpeg 264556.5 100.81% 113.45% 120.35% 22.8 101.32% 106.80% 107.68%

fib 5927.2 121.98% 118.52% 119.83% 58289332.4 99.99% 99.13% 98.15%

figma-startpage 10758.8 98.93% 101.38% 99.37% 63.8 99.22% 103.61% 98.75%

game-of-life 88.4 96.28% 94.02% 98.14% 37.6 98.88% 94.85% 100.52%

guiicons 17627.2 130.33% 113.69% 111.37% 522202.34 119.45% 120.20% 115.28%

hydro 31932.9 97.84% 99.85% 98.65% 84.6 89.24% 94.32% 90.54%

jqkungfu 29246.2 94.42% 90.05% 79.93% 23.6 98.09% 94.49% 88.77%

jsc 218154.5 102.24% 84.84% 87.97% 19046.9 97.36% 93.34% 96.51%

mandelbrot 60570.8 131.97% 7.26% 7.33% 44074249.6 99.55% 99.32% 98.91%

multiplyDouble 6533.8 101.58% 106.38% 107.45% 43857353.6 100.05% 99.26% 100.11%

multiplyInt 5861.4 120.96% 113.67% 120.45% 42531426.8 100.22% 99.16% 98.55%

pacalc 10414.5 90.26% 92.22% 103.58% 3453.8 92.95% 93.85% 102.23%

parqet 78150.8 90.79% 90.32% 90.08% 188.5 96.45% 96.07% 96.29%

pathfinding 21315.8 129.43% 123.20% 166.98% 3368370.8 101.60% 96.35% 85.21%

rfxgen 27742.7 98.81% 96.84% 94.44% 1146599.5 99.65% 98.32% 92.56%

rguilayout 26222.4 100.21% 98.27% 97.52% 440909.2 96.04% 98.48% 95.24%

rguistyler 21885.1 110.35% 114.29% 120.18% 469477.9 107.37% 120.39% 119.56%

riconpacker 25251.2 95.74% 84.12% 87.78% 16982.4 95.36% 87.32% 88.26%

rtexpacker 25133.0 87.92% 79.43% 78.43% 15.2 86.18% 86.18% 83.22%

rtexviewer 16457.3 97.52% 96.57% 88.02% 12.4 97.58% 94.76% 96.77%

sandspiel 22352.0 152.33% 141.32% 155.21% 3135717.0 105.89% 107.45% 92.61%

sqlgui 41837.3 103.06% 98.04% 98.30% 6790.0 100.99% 97.27% 97.28%

Geomean 105.30% 91.35% 94.05% 99.28% 99.48% 98.40%

the time spent loading, parsing, and validating the replay Wasm benchmark, while execution time

represents time to execute the main (i.e. top-level replay) function. We measure these with the

--metrics option of the Wizard engine, which reports load, validation, compilation, and execution

time, and average over 10 runs.

Table 4 reports the results of the replay optimization experiment. On average, applying both

replay optimizations reduces the time spent in load and validation by about 6%. In detail, applying

the function split optimization increases the load and validation time by about 5%. Considering

that some replay benchmarks require the function split optimization to run, we think this is an

acceptable increase. Applying only the memory write merge optimization decreases the load time

about 9%. Individually, mandelbrot seems to enjoy the greatest benefit, with the load and validation

time reduced to just 7.33% of the original time. rtexpacker, jqkungfu, and riconpacker are

other beneficiaries, with the load and validation time reduced to 78.43%, 79.93%, and 87.78% of the

original load and validation time, respectively. On average, applying both replay optimizations

decreases the execution time to 98.40%. We believe that although the replay optimizations do not

significantly affect the execution time, it gives a slight performance improvement. We are currently

investigating the reasons behind.

Note that funky-kart, despite successfully completing the experiment, is excluded from the

table. This is because its replay benchmarks without replay optimizations exceeded the maximum

size limit for function bodies imposed by the productionWasm engines, which prevented them from

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:23

running on any engines. Thus, we discuss the performance characteristics of funky-kart here.

While the function split optimization makes the replay benchmark executable, it does not affect its

binary size. Applying the memory write merge optimization on top of the function split optimization

reduces the load and validate time to 7.80% and the execution time to 86.31% compared to the

replay benchmark with only the function split optimization applied. Thus, alongside mandelbrot,

funky-kart is another example where the memory write merge optimization significantly reduces

the load time and validation time of the replay benchmark, with an added benefit of reducing the

execution time.

In summary, we show that the replay optimization techniques play a crucial role in reducing the

load time and validation time of performance outliers in Wasm-R3-Bench, while having a modest

effect on the execution time.

6 Limitations
Currently, our Wasabi-based instrumentation supports Wasm version 2.0, with the exception of the

SIMD proposal. This limitation can be easily overcome by using a more up-to-date instrumentation

library. Among the proposals in phase 4, which are planned to be standardized soon, the multi-

memory proposal is already supported by Wasm-R3. We also believe our approach can support

Wasm GC with some help from the host environment. Our technique relies on making shadow

copies of all mutable state and detecting modifications by comparing the shared state with the

shadow state which necessitates host support, since Wasm funcref and externref do not have

native Wasm comparison operators. The most challenging proposal to support would be threads,

which remains an open research question, as deterministic replay of racy programs lacks satisfactory

and robust solutions.

7 Related work
Record and replay is a mature area of research that has been explored in various contexts, including

architectural support for record and replay [56], operating system-level record and replay [18, 24],

and language runtime-level record and replay [49]. Typically, such systems require intrusive modifi-

cation to the respective CPU design, kernel, libraries, or language runtime to record events, but can

also be done by bytecode rewriting [29]. In any case, potentially non-deterministic operations and

side-effects must be identified and recorded as events. Enumerating these operations can represent

significant manual work. Our approach has a different requirement in that we aim to run Wasm-R3

on any architecture, operating system, or language runtime without modification. This requirement

led us to using bytecode-level instrumentation.

Among previous instrumentation of this kind in the literature, Wasm-R3 is most similar to

JSBench [45], a record and replay technique for the automated construction of JavaScript bench-

marks. The major difference between JSBench and Wasm-R3 stems from the design differences

in the languages they target: JavaScript and Wasm, respectively. In Wasm, instances and their

host environment are cleanly separated by the import/export boundary. Thus, efficiently tracking

non-determinism caused by the host environment boils down to making shadow copies of the

shared mutable states and comparing them. In contrast, nearly any JavaScript operator could

have unbounded side-effects. For instance, JSBench notes that a JavaScript for...in loop can

be a potential source of non-determinism. This leads the authors of JSBench to describe their

catalogue of non-determinism in JavaScript applications as "necessarily incomplete." We believe

that the simplicity of Wasm-R3’s record phase, in comparison to JSBench, is not a drawback but an

advantage, demonstrating Wasm’s suitability as a target for automatic benchmark generation for

the web.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

347:24 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

Jalangi [50] is another record and replay framework for JavaScript, designed for heavy-weight

dynamic analysis. While Jalangi facilitates record and replay across different environments (e.g.,

recording on a mobile environment and replaying on a desktop environment), it operates within the

confines of JavaScript engines, which accept the same inputs and produce identical outputs. This

means that, despite the convenience offered by Jalangi’s record and replay functionality, it does not

enable something fundamentally impossible; it is possible to have the same execution in different

environments by simply running the same JavaScript code. In contrast, Wasm-R3 enables the

capability to replay a Wasm instance interacting with JavaScript code in non-web Wasm engines,

which is impossible without Wasm-R3. Moreover, the basic technique of Wasm-R3 could allow

recording in non-web Wasm engines and replaying in web Wasm engines. Another important

difference is that, unlike Wasm-R3, Jalangi applies code instrumentation in both the record and

replay phases to implement the replay of the recorded trace. Although this eliminates the need

to precisely determine at which point in the host code an interaction occurred, which Wasm-R3

meets, it has the disadvantage of mixing up the original code and replay code. We instead aim to

preserve the original binary and its exact instruction-by-instruction behavior and only replace

calls to the host with replays. Lastly, Jalangi explicitly states that they did not make any effort

to optimize their implementation. In contrast, we applied numerous optimizations to the trace to

enable Wasm-R3 to scale to real-world applications, and to the replay IR, to ensure the resulting

replay is representative of the recorded execution.

Other record and replay frameworks for JavaScript include Mugshot [39] and WebRR [36].

Mugshot [39] records browser events and shares our goal of recording on unmodified browsers.

Unlike Wasm-R3, Mugshot is tightly coupled with the web browser implementations and adopts

different strategies depending on the browser. In contrast, Wasm-R3 exploits the host-agnostic

nature of Wasm to record the execution of Wasm applications across all browsers. WebRR [36]

proposes a record and replay technique that enhances the robustness of fragile end-to-end tests.

Their primary focus is on avoiding test failures that occur without a bug or misbehavior in the

application under test. In contrast, benchmarks generated from Wasm-R3 do not suffer from any

kind of fragility that plagues end-to-end tests. We refer to a comprehensive survey for a more

detailed discussion of dynamic analysis for JavaScript [9].

Beyond record and replay, a lot of research has gone into Wasm. Hilbig et al. [28] proposed

benchmarks of real-world binaries. Unlike the benchmarks created withWasm-R3, their benchmarks

are not executable, making them unusable for performance benchmarking. Several general-purpose

techniques to dynamically analyze Wasm have been proposed, e.g., based on source-to-source

instrumentation [32] or via dynamic instrumentation inside a Wasm engine [54]. Other work

supports reverse engineering by inferring types [33] and the purpose of functions [48] in Wasm

binaries, studies security issues in Wasm [31], and shows how to use Wasm for obfuscation [47].

Our work contributes to the field by providing the first record and replay technique for Wasm and

a benchmark suite of executable Wasm binaries.

8 Conclusion
We present Wasm-R3, the first record and replay framework for Wasm. The approach works with

no modifications to the source compiler, virtual machine, host environment, operating system, or

hardware. During arbitrary execution of a Wasm module within a host environment, Wasm-R3

records all interactions with the host environment, detecting updates to shared mutable memory

via a shadow memory. The resulting trace is optimized to produce a precise replay binary that

reproduces the original program’s behavior by replaying all interactions with the host. Wasm-R3 is

broadly applicable to numerous real-world Wasm applications, and the replay files it generates

can be run across both web and non-web Wasm engines. Several optimizations applied at both

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:25

recording and replay make infeasibly long traces tractable and reduce the overhead of trace replay

for more faithful execution characteristics. We have made Wasm-R3 available as open source and

hope it will be beneficial to Wasm application developers to create repeatable replays of specific

executions for benchmarking and other purposes. In particular, we hope the technique can unlock a

new era of Wasm benchmarking that better represents real-world use cases by routinely generating

replays from real applications in their respective host environments.

Data-Availability Statement
The artifact is available on Zenodo at [11]. It includesWasm-R3 and theWasm-R3-Bench benchmark

suite.

Acknowledgments
This work was supported by the European Research Council (ERC, grant agreement 851895), and

by the German Research Foundation within the ConcSys, DeMoCo, and QPTest projects. Also, this

workwas partly supported by the National Research Foundation of Korea (NRF) (2022R1A2C2003660

and 2021R1A5A1021944) and Institute for Information & Communication Technology Planning &

Evaluation (IITP) funded by the Korean government MSIT (No. RS-2024-00337703). Partial support

also provided by the National Science Foundation under award #2148301.

References
[1] 2018. TurboFan: V8’s Optimizing Compiler. https://v8.dev/docs/turbofan. https://v8.dev/docs/turbofan (Accessed

2021-07-29).

[2] 2021. JavaScriptCore, the built-in JavaScript engine for WebKit. https://trac.webkit.org/wiki/JavaScriptCore. https:

//trac.webkit.org/wiki/JavaScriptCore (Accessed 2021-07-29).

[3] 2021. SpiderMonkey: Mozilla’s JavaScript and WebAssembly engine. https://spidermonkey.dev. https://spidermonkey.

dev (Accessed 2021-07-29).

[4] 2021. V8 Development Site. https://v8.dev. https://v8.dev (Accessed 2021-07-29).

[5] 2021. Wasmer: A Fast and Secure WebAssembly Runtime. https://github.com/wasmerio/wasmer. https://github.com/

wasmerio/wasmer (Accessed 2021-07-06).

[6] 2021. Wasmtime: a standalone runtime for WebAssembly. https://github.com/bytecodealliance/wasmtime. https:

//github.com/bytecodealliance/wasmtime (Accessed 2021-08-11).

[7] 2024. Announcing Speedometer 3.0: A Shared Browser Benchmark for Web Application Responsiveness. https:

//browserbench.org/announcements/speedometer3/

[8] 2024. binjgb. https://binji.github.io/binjgb/. Retrieved April 5th, 2024.

[9] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic, Koushik Sen, and Cristian-Alexandru

Staicu. 2017. A Survey of Dynamic Analysis and Test Generation for JavaScript. ACM Comput. Surv. 50, 5 (2017),
66:1–66:36. https://doi.org/10.1145/3106739

[10] Clemens Backes. 2018. Liftoff: a new baseline compiler for WebAssembly in V8. https://v8.dev/blog/liftoff Accessed:

2024-03-08.

[11] Doehyun Baek, Jakob Getz, and Yusung Sim. 2024. Wasm-R3: Record-Reduce-Replay for Realistic and Standalone
WebAssembly Benchmarks (Artifact). https://doi.org/10.5281/zenodo.13382344

[12] S. M. Blackburn et al. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Conference
on Object-Oriented Programming Systems Languages and Applications (OOPSLA). 169–190.

[13] Derek L. Bruening. 2004. Efficient, transparent, and comprehensive runtime code manipulation. Ph. D. Dissertation. USA.
AAI0807735.

[14] Bytecode Alliance. 2023. WASI: The WebAssembly System Interface. wasi.dev. https://wasi.dev/ (Accessed 2024-3-26).

[15] Gabriel Cuvillier. 2024. Arxwasm. https://wasm.continuation-labs.com/arxdemo/. Retrieved April 5th, 2024.

[16] Gabriel Cuvillier. 2024. D3wasm. https://wasm.continuation-labs.com/d3demo/. Retrieved April 5th, 2024.

[17] Frank Denis. 2021. LibSodium WebAssembly Benchmarks. https://github.com/jedisct1/webassembly-benchmarks.

https://github.com/jedisct1/webassembly-benchmarks (Accessed 2023-5-7).

[18] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M Chen. 2002. ReVirt: Enabling intrusion

analysis through virtual-machine logging and replay. ACM SIGOPS Operating Systems Review 36, SI (2002), 211–224.

[19] Aaron Turner et al. 2024. Wasmboy. https://wasmboy.app/. Retrieved April 5th, 2024.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

https://v8.dev/docs/turbofan
https://v8.dev/docs/turbofan
https://trac.webkit.org/wiki/JavaScriptCore
https://trac.webkit.org/wiki/JavaScriptCore
https://trac.webkit.org/wiki/JavaScriptCore
https://spidermonkey.dev
https://spidermonkey.dev
https://spidermonkey.dev
https://v8.dev
https://v8.dev
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://browserbench.org/announcements/speedometer3/
https://browserbench.org/announcements/speedometer3/
https://binji.github.io/binjgb/
https://doi.org/10.1145/3106739
https://v8.dev/blog/liftoff
https://doi.org/10.5281/zenodo.13382344
wasi.dev
https://wasi.dev/
https://wasm.continuation-labs.com/arxdemo/
https://wasm.continuation-labs.com/d3demo/
https://github.com/jedisct1/webassembly-benchmarks
https://github.com/jedisct1/webassembly-benchmarks
https://wasmboy.app/

347:26 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

[20] Matteo Basso et al. 2024. Awesome-Wasm. https://github.com/mbasso/awesome-wasm. Retrieved April 5th, 2024.

[21] Zakai et al. 2024. Binaryen. https://github.com/WebAssembly/binaryen. Retrieved April 3, 2024.

[22] Phani Kishore Gadepalli, Sean P. McBride, Gregor Peach, L. Cherkasova, and Gabriel Parmer. 2020. Sledge: a Serverless-

first, Light-weight Wasm Runtime for the Edge. Proceedings of the 21st International Middleware Conference (2020).
https://api.semanticscholar.org/CorpusID:228085728

[23] Google Chrome Developers. 2024. Chrome DevTools Protocol. https://chromedevtools.github.io/devtools-protocol/.

[24] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M. Frans Kaashoek, and Zheng Zhang. 2008. R2:

an application-level kernel for record and replay. In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (San Diego, California) (OSDI’08). USENIX Association, USA, 193–208.

[25] Giuseppe Gurgone and Philipp Spiess. 2018. A Real-World WebAssembly Benchmark. https://pspdfkit.com/blog/2018/a-

real-world-webassembly-benchmark/

[26] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown. 2001. MiBench: A free, commercially

representative embedded benchmark suite. In Proceedings of the Fourth Annual IEEE International Workshop onWorkload
Characterization. WWC-4 (Cat. No.01EX538). 3–14. https://doi.org/10.1109/WWC.2001.990739

[27] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon

Zakai, and JF Bastien. 2017. Bringing the web up to speed with WebAssembly. SIGPLAN Not. 52, 6 (jun 2017), 185–200.

https://doi.org/10.1145/3140587.3062363

[28] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of Real-World WebAssembly Binaries:

Security, Languages, Use Cases. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association
for Computing Machinery, New York, NY, USA, 2696–2708. https://doi.org/10.1145/3442381.3450138

[29] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet lightweight record-and-replay for Android. In

Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA,

349–366. https://doi.org/10.1145/2814270.2814320

[30] Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha. 2019. Not so fast: Analyzing the performance of

{WebAssembly} vs. native code. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 107–120.
[31] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is New Again: Binary Security of

WebAssembly. In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and

Franziska Roesner (Eds.). USENIX Association, 217–234. https://www.usenix.org/conference/usenixsecurity20/

presentation/lehmann

[32] Daniel Lehmann and Michael Pradel. 2019. Wasabi: A Framework for Dynamically Analyzing WebAssembly. In

Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA,

1045–1058. https://doi.org/10.1145/3297858.3304068

[33] Daniel Lehmann and Michael Pradel. 2022. Finding the dwarf: recovering precise types from WebAssembly binaries.

In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Ranjit
Jhala and Isil Dillig (Eds.). ACM, 410–425. https://doi.org/10.1145/3519939.3523449

[34] Friedrich Leisch and Evgenia Dimitriadou. 2010. mlbench: Machine Learning Benchmark Problems. R package version

2.1-1.

[35] Borui Li, Hongchang Fan, Yi Gao, and Wei Dong. 2022. Bringing webassembly to resource-constrained iot devices

for seamless device-cloud integration. Proceedings of the 20th Annual International Conference on Mobile Systems,
Applications and Services (2022). https://api.semanticscholar.org/CorpusID:249705610

[36] Zhenyue Long, Guoquan Wu, Xiaojiang Chen, Wei Chen, and Jun Wei. 2020. WebRR: self-replay enhanced robust

record/replay for web application testing. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association
for Computing Machinery, New York, NY, USA, 1498–1508. https://doi.org/10.1145/3368089.3417069

[37] William Mbotta. 2024. Tic tac toe Wasm. https://sepiropht.github.io/tic-tac-toe-wasm/. Retrieved April 5th, 2024.

[38] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. 2022. WebAssembly as a Common Layer for the

Cloud-edge Continuum. Proceedings of the 2nd Workshop on Flexible Resource and Application Management on the Edge
(2022). https://api.semanticscholar.org/CorpusID:249960276

[39] James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot: deterministic capture and replay for Javascript

applications. In Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation (San Jose,

California) (NSDI’10). USENIX Association, USA, 11.

[40] Microsoft. 2024. Playwright. https://playwright.dev/. Retrieved April 5th, 2024.

[41] Matthias Müller, Brian Whitney, Robert Henschel, and Kalyan Kumaran. 2011. SPEC Benchmarks. Springer US, Boston,
MA, 1886–1893. https://doi.org/10.1007/978-0-387-09766-4_370

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

https://github.com/mbasso/awesome-wasm
https://github.com/WebAssembly/binaryen
https://api.semanticscholar.org/CorpusID:228085728
https://chromedevtools.github.io/devtools-protocol/
https://pspdfkit.com/blog/2018/a-real-world-webassembly-benchmark/
https://pspdfkit.com/blog/2018/a-real-world-webassembly-benchmark/
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/2814270.2814320
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1145/3519939.3523449
https://api.semanticscholar.org/CorpusID:249705610
https://doi.org/10.1145/3368089.3417069
https://sepiropht.github.io/tic-tac-toe-wasm/
https://api.semanticscholar.org/CorpusID:249960276
https://playwright.dev/
https://doi.org/10.1007/978-0-387-09766-4_370

Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly Benchmarks 347:27

[42] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumenta-

tion. SIGPLAN Not. 42, 6 (jun 2007), 89–100. https://doi.org/10.1145/1273442.1250746

[43] Harish Patil, Cristiano L. Pereira, Mack Stallcup, Gregory Lueck, and James H. Cownie. 2010. PinPlay: a framework for

deterministic replay and reproducible analysis of parallel programs. In IEEE/ACM International Symposium on Code
Generation and Optimization. https://api.semanticscholar.org/CorpusID:17445756

[44] Matthias J. Reisinger. 2016. PolyBenchC. https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1. https://github.

com/MatthiasJReisinger/PolyBenchC-4.2.1 (Accessed 2023-5-7).

[45] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. 2011. Automated Construction of JavaScript Benchmarks.

In Proceedings of the 2011 ACM International Conference on Object Oriented Programming Systems Languages and
Applications (Portland, Oregon, USA) (OOPSLA ’11). Association for Computing Machinery, New York, NY, USA,

677–694. https://doi.org/10.1145/2048066.2048119

[46] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010. An analysis of the dynamic behavior of

JavaScript programs. In ACM-SIGPLAN Symposium on Programming Language Design and Implementation. https:

//api.semanticscholar.org/CorpusID:2334122

[47] Alan Romano, Daniel Lehmann, Michael Pradel, and Weihang Wang. 2022. Wobfuscator: Obfuscating JavaScript

Malware via Opportunistic Translation to WebAssembly. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San
Francisco, CA, USA, May 22-26, 2022. IEEE, 1574–1589. https://doi.org/10.1109/SP46214.2022.9833626

[48] Alan Romano and Weihang Wang. 2023. Automated WebAssembly Function Purpose Identification With Semantics-

Aware Analysis. In Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May
2023, Ying Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and Geert-Jan Houben (Eds.). ACM, 2885–2894.

https://doi.org/10.1145/3543507.3583235

[49] Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse Coskun, and Manuel Egele. 2019. RANDR: Record and Replay

for Android Applications via Targeted Runtime Instrumentation. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 128–138. https://doi.org/10.1109/ASE.2019.00022

[50] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013. Jalangi: a selective record-replay and

dynamic analysis framework for JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). Association for Computing Machinery, New York, NY, USA,

488–498. https://doi.org/10.1145/2491411.2491447

[51] Ben L. Titzer. 2021. Wizard, An advanced WebAssembly Engine for Research. https://github.com/titzer/wizard-engine.

https://github.com/titzer/wizard-engine Retrieved Februar 23, 2024.

[52] Ben L. Titzer. 2022. A fast in-place interpreter for WebAssembly. Proc. ACM Program. Lang. 6, OOPSLA2, Article 148
(oct 2022), 27 pages. https://doi.org/10.1145/3563311

[53] Ben L. Titzer. 2024. Whose Baseline Compiler Is It Anyway?. In International Symposium on Code Generation and
Optimization (CGO).

[54] Ben L Titzer, Elizabeth Gilbert, Bradley Wei Jie Teo, Yash Anand, Kazuyuki Takayama, and Heather Miller. 2024.

Flexible Non-intrusive Dynamic Instrumentation for WebAssembly. arXiv preprint arXiv:2403.07973 (2024).
[55] Aaron Turner, James Milner, and Jonathan Beri. 2024. Made with WebAssembly. https://madewithwebassembly.com/.

Retrieved April 5th, 2024.

[56] Min Xu, Rastislav Bodik, and Mark D. Hill. 2003. A "flight data recorder" for enabling full-system multiprocessor

deterministic replay. SIGARCH Comput. Archit. News 31, 2 (may 2003), 122–135. https://doi.org/10.1145/871656.859633

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 347. Publication date: October 2024.

https://doi.org/10.1145/1273442.1250746
https://api.semanticscholar.org/CorpusID:17445756
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://doi.org/10.1145/2048066.2048119
https://api.semanticscholar.org/CorpusID:2334122
https://api.semanticscholar.org/CorpusID:2334122
https://doi.org/10.1109/SP46214.2022.9833626
https://doi.org/10.1145/3543507.3583235
https://doi.org/10.1109/ASE.2019.00022
https://doi.org/10.1145/2491411.2491447
https://github.com/titzer/wizard-engine
https://github.com/titzer/wizard-engine
https://doi.org/10.1145/3563311
https://madewithwebassembly.com/
https://doi.org/10.1145/871656.859633

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Overview
	3.2 Record Phase
	3.3 Reduce Phase
	3.4 Replay Phase

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1. Applicability
	5.3 RQ2. Performance
	5.4 RQ3. Effectiveness of Trace Reduction
	5.5 RQ4. Effectiveness of Replay Optimization

	6 Limitations
	7 Related work
	8 Conclusion
	References

