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A B S T R AC T

WebAssembly is a rapidly expanding low-level bytecode that runs in
browsers, on the server side, and in standalone runtimes. It brings excit-
ing opportunities to the Web and has the potential to radically change
the distribution model of software. At the same time, WebAssembly
comes with new challenges and open questions, in particular regard-
ing program analysis and security.

The goal of this dissertation is to answer such questions and to sup-
port developers with novel insights, datasets, and program analysis
techniques for WebAssembly binaries. WebAssembly is frequently com-
piled from unsafe languages such as C and C++. That begs the question:
What happens with memory vulnerabilities when compiling to Web-
Assembly? We start by analyzing the language and ecosystem and �nd
severe issues, such as the inability to protect memory, missing miti-
gations, and new attacks that are unique to WebAssembly. To assess
the risk in practice, we collect WasmBench, a large-scale dataset of
real-world binaries, and study common source languages and usages
of WebAssembly. To �nd and mitigate vulnerabilities leading to such
attacks, we develop Fuzzm, the �rst binary-only greybox fuzzer for
WebAssembly. Due to WebAssembly’s novelty and its low-level na-
ture, developers are also in dire need of techniques to help them un-
derstand and analyze WebAssembly programs. For that, we introduce
Wasabi, the �rst dynamic analysis framework for WebAssembly. It
employs static binary instrumentation, which requires us to address
several technical challenges, such as handling WebAssembly’s static
types and structured control-�ow. Finally, we present SnowWhite, a
learning-based approach for recovering high-level types from WebAs-
sembly binaries. Unlike prior work, also among other binary formats,
it generates types from an expressive type language, and not by classi-
�cation into few �xed choices.

This dissertation shows that program analysis of WebAssembly bi-
naries has versatile applications and can be reliably and e�ciently im-
plemented. Given the young age yet steep trajectory of WebAssembly,
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it is going to be an important language and binary format for years
to come. We look forward to many more works in this area, and hope
they can build on the results, techniques, and datasets put forth in this
dissertation.

keywords WebAssembly, program analysis, software security,
study, dataset, fuzzing, static binary instrumentation, neural soft-
ware analysis, type recovery
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Z U S A M M E N FA S S U N G

WebAssembly ist ein zunehmend genutzter Low-Level-Bytecode, der
in Browsern, auf Servern und in unabhängigen Laufzeitumgebungen
ausgeführt wird. WebAssembly erö�net neue, spannende Nutzungs-
möglichkeiten für das Web und hat das Potenzial, radikal zu verändern,
wie Software verteilt wird. Gleichzeitig bringt WebAssembly neue Her-
ausforderungen und o�ene Fragen mit sich, insbesondere in Bezug auf
Programmanalyse und Sicherheit.

Diese Dissertation hat zum Ziel, jene Fragen zu beantworten und
Softwareentwickler mit neuen Erkenntnissen, Datensätzen und Pro-
grammanalysetechniken für WebAssembly zu unterstützen. WebAssem-
bly wird häu�g aus unsicheren Quellsprachen wie C und C++ kompi-
liert. Das wirft die Frage auf, wie sich Speicherschwachstellen bei der
Übersetzung nach WebAssembly verhalten. Wir gehen dieser Frage ein-
gangs nach und �nden schwerwiegende Probleme, zum Beispiel feh-
lenden Speicherschutz und neuartige Angri�e, die durch WebAssem-
bly überhaupt erst ermöglicht werden. Um das Risiko solcher Angri�e
einzuschätzen, stellen wir weiterhin einen großen Datensatz realisti-
scher WebAssembly-Programme zusammen, WasmBench, und unter-
suchen die Quellsprachen und Verwendung von WebAssembly in der
Praxis. Um Schwachstellen zu entdecken und Angri�e zu verhindern,
entwickeln wir Fuzzm, den ersten Greybox-Fuzzer für WebAssembly-
Binärprogramme. Da WebAssembly neu ist und auf niedriger Abstrak-
tionsschicht operiert, benötigen Entwickler darüber hinaus dringend
Techniken, die ihnen helfen, WebAssembly-Programme zu verstehen
und zu analysieren. Zu diesem Zweck entwickeln wir Wasabi, das
erste Dynamische-Analyse-Framework für WebAssembly. Es nutzt sta-
tische Instrumentierung, was uns vor mehrere technische Herausfor-
derungen stellt, z. B. aufgrund der statischen Typen und strukturier-
ten Kontroll�usskonstrukte in WebAssembly. Schließlich stellen wir
SnowWhite vor, eine Programmanalyse, die mittels maschinellem Ler-
nen Datentypen mit hohem Abstraktionsniveau aus WebAssembly re-
konstruiert. Im Gegensatz zu früheren Arbeiten, auch solchen für an-
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dere Binärformate, generiert unser Ansatz Datentypen mithilfe einer
ausdrucksstarken Typsprache und nicht durch Auswahl aus wenigen
festgelegten Klassen.

Diese Dissertation zeigt, dass die Analyse von WebAssembly-Binär-
programmen vielseitige Anwendungen hat, und zuverlässig und e�-
zient implementiert werden kann. Angesichts des jungen Alters und
der gleichzeitig starken Entwicklung wird WebAssembly auch in den
kommenden Jahren eine wichtige Bytecode-Sprache sein. Wir sind ge-
spannt auf viele weitere Arbeiten in diesem Bereich und ho�en, dass
sie auf den Ergebnissen, Techniken und Datensätzen aufbauen können,
die wir in dieser Dissertation vorstellen.

schlagwörter WebAssembly, Programmanalyse, Softwaresicher-
heit, Studie, Datensatz, statische Instrumentierung von Binärprogram-
men, Neuronale Softwareanalyse, Rekonstruktion von Datentypen
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1 I N T R O D U C T I O N

The World Wide Web is becoming ever more powerful and complex.
Gone are the days when websites were essentially text documents, “hy-
perlinked”, but not very interactive. Today, the Web is a software plat-
form for rich web applications, o�ering messaging and conferencing,1
music and video streaming,2 social media,3 navigation services,4 and
collaborative o�ce software,5 just to name a few examples. The com-
panies providing such services are extremely valuable, with pro�ts in
the billions, and stock market capitalizations in the trillions of US dol-
lars [Internet Companies]. Besides their economical importance, web
applications also have clear advantages for users: Unlike classical na-
tive software, web applications need not be installed; are always up-
to-date; can be conveniently accessed and shared via hyperlinks; and
are portable across di�erent devices, operating systems, and hardware
architectures [Bleigh 2014].

Which underlying technologies enable the feat of web applications
in the �rst place? The Internet for global data transmission certainly
plays one part. The other part is allowing web browsers not to merely
display content that was generated by a server, but to execute appli-
cation code on the client side, namely the user’s machine itself. Up
until recently, JavaScript was the only client-side programming lan-
guage directly supported by browsers.6 JavaScript’s role on the client
side undoubtedly contributed to its success, making it one of the most
used programming languages [StackOver�ow Survey 2021; TIOBE In-
dex 2022]. Another contributor is that developers prefer using a sin-
1 https://slack.com, https://zoom.us, https://web.whatsapp.com
2 https://www.spotify.com, https://www.youtube.com, https://www.netflix.com
3 https://www.facebook.com, https://twitter.com, https://www.instagram.com
4 https://www.openstreetmap.org, https://www.google.com/maps
5 https://www.office.com, https://docs.google.com
6 Other technologies, such as Java applets or Flash also allowed running code on the

client side, but those required third-party browser plugins that had to be manually
installed and updated. Frequent security issues and lack of integration with the Web
led those technologies to being deprecated in favor of JavaScript.

1
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gle language throughout the whole application stack, including the
server side. This led to the emergence of the Node.js runtime and a
large ecosystem of JavaScript packages and development tools,7 popu-
larizing JavaScript outside the browser as well.

JavaScript was famously designed in just ten days as a “silly little
brother language” to languages like Java [Severance 2012]. Clearly, it
has been much more successful than anticipated, and, arguably, than it
should have been. JavaScript’s inherent limitations become more and
more apparent: Due to many dynamic language features, good Java-
Script performance requires complex just-in-time (JIT) compilers, e.g.,
SpiderMonkey in Firefox or V8 in Google Chrome and Node.js.8 Achiev-
ing predictable performance is still di�cult, and the complexity of JIT
compilers makes them an attractive target for attackers [Groß and Bur-
nett 2022]. JavaScript being a human-readable text format made sense
for small scripts, but as a code distribution format, it is inadequate.
The median website today contains almost half a megabyte of Java-
Script code as text [Goel 2021]; just parsing and compiling this code
accounts for a major portion of the load time of websites [Clark 2017].
Finally, more and more JavaScript code is generated rather than directly
written. To reuse code from other languages, or just for newer lan-
guage features and static error checking, several languages compile
to JavaScript.9 Curiously, that extends even to C and C++, which can
be compiled to asm.js, a stylized subset of JavaScript.10 While certainly
an achievement, it can only be described as one giant hack. Inadver-
tently, JavaScript has become the main “code format for the Web”, but
certainly not because it was designed for it.

1.1 webassembly

In 2015, the four major browser vendors11 publicly announced work-
ing on WebAssembly, a fresh start for a portable, low-level bytecode
[Bastien 2015]. Initially, WebAssembly was meant to complement Java-
Script, in particular for compute-intensive parts of modern web appli-
cations. In that, it has already been very successful. Implemented by
7 https://nodejs.org, https://www.npmjs.com, https://webpack.js.org
8 https://spidermonkey.dev, https://v8.dev
9 https://www.typescriptlang.org, https://babeljs.io, https://github.com/

google/j2cl, https://www.scala-js.org
10 http://asmjs.org/spec/latest/
11 Apple (Safari), Google (Chrome), Microsoft (IE, Edge), and Mozilla (Firefox).
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all major browsers in 2017 [Wagner 2017], o�cially standardized in
2019 [WebAssembly Speci�cation], WebAssembly is supported by 95%
of all global browser installations as of April 2022.12 It is used in several
large web applications, including commercial products, such as Auto-
CAD and Figma,13 and brings former desktop-only applications to the
browser, such as Google Earth, the Unreal game engine, and even fully-
�edged Adobe Photoshop.14 As a fast, low-level, portable bytecode for
browsers, it might fundamentally change software distribution as we
know it, allowing web applications to take over use cases that were
formerly reserved to native applications.

WebAssembly is not necessarily limited to only the Web either. Its
simplicity and generality has sparked interest for using it outside the
browser as well, e.g., in cloud and edge computing,15 on resource con-
strained devices,16 for smart contract systems,17 and even as a bytecode
for stand-alone runtimes.18 Its young age notwithstanding, WebAssem-
bly was awarded the ACM SIGPLAN Programming Languages Soft-
ware Award in 2021.19 WebAssembly and its ecosystem, although still
evolving, have already gathered signi�cant momentum and will be an
important computing platform for years to come.

As the name implies, WebAssembly is designed as a portable, low-
level compilation target, with good performance and a compact binary
representation [Haas et al. 2017; WebAssembly Website]. Listing 1.1
shows an example program in both the binary format (.wasm) and the
corresponding human-readable text format (.wat). The binary format
is usually produced by compilers and consumed by runtimes. It is fast
to send over the network and quick to parse. The text format is mostly

12 Statistic for all tracked devices on https://caniuse.com/?search=WebAssembly.
13 https://web.autocad.com, https://www.figma.com
14 https://earth.google.com/web/, https://photoshop.adobe.com/
15 [Hall and Ramachandran 2019; Shillaker and Pietzuch 2020] and industry o�erings by

Cloud�are [Varda 2018] and Fastly [Hickey 2019, 2018].
16 [Gadepalli et al. 2020; Gurdeep Singh and Scholliers 2019], WebAssembly Micro Run-

time (WAMR, https://github.com/bytecodealliance/wasm-micro-runtime)
17 WebAssembly is the bytecode of EOSIO (https://eos.io), and discussed as the future

bytecode for Ethereum 2.0 [McCallum 2019].
18 WASI, the WebAssembly System Interface, provides a portable operating system

interface to stand-alone WebAssembly applications [Clark 2019; WASI Website]. Sev-
eral WebAssembly runtimes support WASI, e.g., Wasmtime (https://github.com/
bytecodealliance/wasmtime). An industry organization furthering WebAssembly and
WASI is the Bytecode Alliance (https://bytecodealliance.org), with members such
as Amazon, Arm, Google, Intel, Microsoft, Mozilla, and Siemens.

19 http://www.sigplan.org/Awards/Software/
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1 ;; WebAssembly magic bytes (\0asm) and version number (1.0).
2 00 61 73 6D
3 01 00 00 00
4

5 ;; Type section: 13 bytes long, 3 types.
6 01 0D 03
7

8

9 60 01 7E 00
10 60 01 7F 01 7E
11 60 00 00
12

13 ;; Import section: 14 bytes long, 1 import.
14 02 0E 01
15

16

17 04 68 6F 73 74
18 05 70 72 69 6E 74
19 00 00
20

21

22 ;; Memory section: 3 bytes long, 1 memory.
23 05 03 01
24

25 00 01
26

27 [...] ;; Function declaration section (omitted for brevity).
28

29 ;; Code section, 21 bytes long, 2 functions.
30 0A 15 02
31 0A 00
32 42 01
33 20 00
34 29 03 00
35 7C
36 0B
37

38 08 00
39 41 07
40 10 01
41 10 00
42 0B
43

(module

;; Functions and instructions are statically typed.
;; All types are declared first and used later.
(type $t0 (func (param i64) (result))) ;; See lines 19,
(type $t1 (func (param i32) (result i64))) ;; 31, and
(type $t2 (func (param) (result))) ;; 38 below.

;; Import a print function from the host environment.
(import

"host" ;; Imports have two-level names.
"print"
(func $print (type $t0)) ;; Type $t0 from above.

) ;; End of import.

;; Declares a memory of size 1 page (64KiB).
(memory 1) ;; Zero-initialized by default.

(func $load_and_increment (type $t1)
i64.const 1 ;; Push a constant on the stack.
local.get 0 ;; Push first argument on the stack.
i64.load ;; Load 64-bit int from that address.
i64.add ;; Add the two values on the stack.

) ;; Implicit return at the end of the function.

(func $main (type $t2)
i32.const 7 ;; Push argument for next call.
call $load_and_increment
call $print ;; This call leaves the stack empty.

)
) ;; End of module.

Listing 1.1: An introductory WebAssembly program, showcasing several
language features. The binary representation is shown in gray on the
left, and the matching human-readable text representation on the right.
The wasm2wat and wat2wasm programs convert between the two repre-
sentations. The conversion is one-to-one, except for ;;comments (which
are lost in the binary) and $indices (which are just numbers in the
binary; their name in the text format is only for human convenience).
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for human understanding and for infrequent manual modi�cation, sim-
ilar to native assembly languages.

Conceptually, WebAssembly instructions execute on a stack-based
virtual machine (VM). For example, the addition in line 35 pops two
arguments from the implicit operand stack, and pushes the result to the
stack again. In practice, WebAssembly bytecode is compiled to e�cient
native code, which is then executed without an operand stack.

As security is paramount when executing untrusted code on the
Web, WebAssembly bytecode is more restricted than native code. Code
is strictly separated from data, and instructions and functions are stat-
ically type-checked (e.g., lines 9, 19, and 32). WebAssembly programs
execute in a sandbox, i.e., they can only access their own memory and
call their own, declared functions. All interaction with the host envi-
ronment must go through explicitly imported functions (line 16).

The bytecode and stack machine of WebAssembly is at �rst sight
reminiscent of the JVM and its bytecode [JVM Speci�cation]. How-
ever, there are several di�erences, most of them because WebAssem-
bly is more low-level than Java. WebAssembly has no notion of ob-
jects or classes and no garbage collector. Instead, it features a �at, byte-
addressable memory (line 25), which is organized and managed by the
program itself. This makes WebAssembly a good compilation target
from systems programming languages, such as C, C++, or Rust. We
discuss the language and its ecosystem in more detail in Chapter 2.

1.2 program analysis

To cope with the complexity of modern web applications, or any com-
plex software system in general, developers often rely on program ana-
lysis. Program analysis can support developers in a wide range of ev-
eryday problems, e.g., when optimizing performance, understanding
and debugging code, and in problems around software security, such
as �nding memory errors and mitigating exploitation. It is an integral
part of many practical tools, e.g., compilers, linters, integrated develop-
ment environments (IDEs), pro�lers, sanitizers, and fuzzers.

Program analysis techniques, including those discussed in this thesis,
can be classi�ed across several dimensions:

static vs. dynamic analysis Static analysis reasons about pro-
grams without actually executing them [Møller and Schwartzbach 2021].
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This is desirable because it does not require program inputs. The down-
side of static analysis is that it needs to approximate the actual runtime
behavior, rendering it often less precise than dynamic analysis. Con-
versely, dynamic analysis techniques do execute the program, e.g., on
a test suite or on automatically generated inputs. The downside of dy-
namic analysis is that it typically cannot explore all program behaviors,
due to the large or even in�nite search space of possible behaviors.

classical vs. neural approaches Classical program analysis
is based on precise, logical reasoning, e.g., by collecting and solving
constraints about a program. An example problem well suited to clas-
sical program analysis is to prove code unreachable to be able to re-
move it. However, not all problems can be expressed in such a frame-
work. Especially problems with a human component or where there is
no single correct answer are often better suited to statistical methods.
An example is to determine which name is most “natural” for a certain
variable. One particularly powerful statistical method of late are neural
networks, giving rise to neural software analysis [Pradel and Chandra
2021]. There, machine learning models are trained on large amounts of
program data labeled with the expected analysis output, and the model
is then later queried on previously unseen problem instances.

program representation One question is at which abstraction
level programs are analyzed. The source code is what the developer
originally wrote, but it is not always available, e.g., for third-party code
or malware. Even if source code is available, an analysis on this level
is tied to one particular programming language, which is problematic
for software written in multiple languages. Machine code can also be
analyzed, but this is challenging, e.g., due to information lost during
compilation, and because there are many di�erent hardware architec-
tures. Finally, programs can also be analyzed in an intermediate rep-
resentation (IR) that is somewhere between the source language and
native code, e.g., compiler IRs or portable bytecode.

1.3 program analysis of webassembly
binaries

In this dissertation, we focus on program analysis for WebAssembly,
to help developers with understanding, optimizing, and improving the
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Figure 1.1: WebAssembly is the common bytecode between multiple
source languages and multiple host environments.

security and correctness of WebAssembly applications on the Web and
outside of browsers. The program analysis techniques in this thesis
cover di�erent points of the design space mapped out before. In par-
ticular, we employ both static and dynamic analysis, and both classical
and neural approaches. In all cases, we analyze programs at the Web-
Assembly bytecode level, not source code or native machine code. In
this dissertation, we often use the terms WebAssembly bytecode and
WebAssembly binaries interchangeably.20

Why is program analysis of WebAssembly binaries worthwhile in
particular? First, WebAssembly’s position as the low-level bytecode for
the Web makes it highly relevant today and more so in the future. If
proponents of WebAssembly are to be believed, it has the potential to
become a universal bytecode for applications outside the browser as
well. Figure 1.1 shows that WebAssembly is the common interchange
format between multiple source languages compiling to WebAssem-
bly and di�erent host environments executing it. Developing program
analyses for each individual source language, or for each of the di�er-
ent runtimes does not scale. When source code is not available, there
is also no choice but to analyze the WebAssembly bytecode directly.

Second, as a novel code format, analyzing WebAssembly is rife with
open challenges and opportunities. When statically instrumenting Web-

20 Both terms contrast WebAssembly with source languages like JavaScript. Binary
stresses a bit more its low-level nature and the executable �le format. Bytecode focuses
more on its portability, the language, and that it executes on an abstract machine.



8 introduction

Assembly binaries, the rewriting needs to be type-aware, otherwise the
resulting binaries are no longer valid. Other characteristics of WebAs-
sembly also need to be taken into account, e.g., structured control-�ow
with relative branch labels. At the same time, WebAssembly is a saner
format for binary analysis and rewriting than native machine code.
Static disassembly of WebAssembly is robust, and built-in validation
helps with the reliability of static rewriting. We will discuss challenges
and opportunities around WebAssembly in more detail in Section 1.4.

Last but not least, we believe research should yield practical insights,
datasets, and (prototype) tools that are useful to developers and other
researchers to build on. Web developers so far are mostly used to high-
level JavaScript programs. With WebAssembly, e.g., compiled from C
and C++ code, they require new tooling and guidelines for dealing
with memory vulnerabilities, or to make sense of a binary without
source code. We discuss the conceptual contributions of our work in
Section 1.5 and how the chapters of the dissertation map to publica-
tions and released artifacts in Section 1.6.

dissertation goal In summary, the goal of this dissertation is
to produce novel insights, datasets, and techniques to support devel-
opers in practical problems around understanding, optimizing, and im-
proving the security and reliability of WebAssembly applications. The
methods we employ come from program analysis, and include static
and dynamic as well as classical and neural approaches. In this work,
we focus on WebAssembly binaries and show that analysis at this level
can be reliably and e�ciently implemented.

1.4 challenges and opportunities

As a novel language and bytecode format, analyzing WebAssembly
comes with several high-level challenges and opportunities. We cat-
egorize them into �ve broad topics. In the later chapters we expand on
them speci�cally for each project.

webassembly-specific language features (c1) When ana-
lyzing and instrumenting WebAssembly bytecode, its unique language
features need to be taken into account. For example, instead of jumps
to absolute code addresses, WebAssembly has structured control-�ow
with nested code blocks and branches that identify their target by rel-
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ative numerical labels. Other language features of interest are the im-
plicit operand stack, type-polymorphic instructions, and linear mem-
ory. These need to be handled in both static and dynamic analysis. At
the same time, some language features can also be seen as an opportu-
nity, as they make WebAssembly more amenable to program analysis
than, e.g., native code.

data availability (c2) To focus research on relevant issues, it
is useful to look at data from real-world usage of the language and
the ecosystem. Similarly, for machine learning, one typically requires
a large set of labeled data for training. Finally, sets of real-world pro-
grams are useful to test analysis implementations. Unfortunately, given
WebAssembly’s young age, the research community has not yet col-
lected such datasets, which requires us to do so.

security model (c3) WebAssembly is often touted for its secu-
rity. Indeed, some security aspects have been a concern early in the lan-
guage design, e.g., ensuring that WebAssembly programs cannot access
data beyond their own memory. However, these aspects focus mainly
on one kind of threat, namely protecting the host from malicious Web-
Assembly binaries. Other aspects of WebAssembly’s security model are
understudied, e.g., how vulnerable WebAssembly programs are against
attacks inside their own memory, and which exploits can result from
that on di�erent host environments.

low-level types (c4) WebAssembly is statically typed, but it has
only four low-level primitive types, namely for numbers. This impedes
program understanding, for which more high-level types would be use-
ful, e.g., pointers, arrays, or objects. Binary rewriting is also made more
challenging by static types, as care must be taken that the resulting bi-
naries are still type-correct. On the upside, built-in type checking is
useful as a basic validation for binary rewriting, and low-level types
can be fed as input features to machine learning models.

binary format (c5) The WebAssembly binary format is more
low-level than source code. When we started our research, libraries
for parsing and transforming its binaries were scarce, which prompted
us to develop our own tooling. At the same time, WebAssembly of-
fers more opportunities for binary analysis and static instrumentation
than native code. It avoids problematic features, such as mixed code



10 introduction

and data, and can thus be reliably disassembled and instrumented. The
well-speci�ed binary format is what enables robust program analysis
for WebAssembly at all.

1.5 outline and contributions

We now outline how this dissertation is organized. The main content
is in Chapters 2 to 7, which correspond to �ve research projects and
publications (see Section 1.6). Of those chapters, Chapter 2 provides
background on the WebAssembly language and ecosystem, drawing
material and merging it from the mentioned publications. Chapters 4
to 7 then cover the individual projects in detail. After that, we discuss
related work in Chapter 8 and end with conclusions, open questions,
and an outlook into the future in Chapter 9.

At a high level, the main chapters can be grouped into two parts.
In the �rst part (Chapters 2–4), we analyze fundamental language con-
cepts, collect data about how WebAssembly is used in practice, and dis-
cuss the consequences of those �ndings, in particular for security. This
part is more focused on understanding, conceptual �ndings, and gener-
ating insights. In the second part (Chapters 5–7), we present concrete
program analysis and instrumentation techniques for WebAssembly bi-
naries. This includes Wasabi, a generic dynamic analysis framework,
Fuzzm, a binary-only fuzzer and binary hardening instrumentation,
and SnowWhite, a neural type recovery approach.

In the following, we summarize the main contributions of this dis-
sertation, grouped by the �ve projects it is based on. We also highlight
how our work addresses the challenges identi�ed in Section 1.4.

binary security Chapter 3 presents our work on the security of
WebAssembly binaries. Protecting the host from malicious WebAssem-
bly code has been an early goal in the language design, but it is less clear
how secure WebAssembly programs themselves are from exploitation.
We analyze the language and ecosystem, and �nd WebAssembly’s lin-
ear memory, unmanaged data, the lack of compiler-inserted mitiga-
tions, and unsafe allocators to be problematic. The result is that vulner-
abilities in memory-unsafe source languages can translate into vulner-
able WebAssembly binaries. Surprisingly, while many of those classic
vulnerabilities are no longer exploitable when compiling to native code,
they are completely exposed when compiling to WebAssembly. More-
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over, WebAssembly enables unique attacks, such as overwriting sup-
posedly constant data or manipulating the heap using a stack over�ow.
Our �ndings contest prior claims that, e.g., compiler-inserted mitiga-
tions are unnecessary for WebAssembly. To demonstrate the severity
of our �ndings, we also provide a library of attack primitives and build
three exploit chains against vulnerable proof-of-concept applications.
Depending on the host environment, these exploits lead to cross-site
scripting in the browser, remote code execution on Node.js, and an arbi-
trary �le write on stand-alone WebAssembly runtimes. We also discuss
how the security of WebAssembly binaries could be improved with lan-
guage changes, mitigations in the ecosystem, and concrete lessons to
adopt for developers.

In terms of high-level challenges, this work focuses on the security
model for WebAssembly (c3). We conclude that host security alone is
not enough, and that there is a perhaps surprising lack of binary secu-
rity in WebAssembly. We also analyze WebAssembly-speci�c language
features (c1), such as linear memory, the di�erence between managed
and unmanaged data, and compare the runtime type-checking of indi-
rect calls to native control-�ow integrity (CFI) schemes.

wasmbench Going beyond the manual analysis of the language
and select examples in the previous chapter, more can be learned by
looking at larger datasets of real-world programs. Unfortunately, such
datasets do not exist for WebAssembly. Thus, Chapter 4 presents a
dataset and study of 8,461 unique WebAssembly binaries that we gath-
ered from a wide range of sources, including code repositories, pack-
age managers, and live websites. Through a combination of static ana-
lysis, statistics, and manual inspection, we study which source lan-
guages WebAssembly binaries are compiled from, what functions are
commonly imported from the host environment, and how WebAssem-
bly is used in the wild. For example, we �nd that two thirds of the bi-
naries are compiled from C and C++. Consequently, the security issues
discussed above potentially apply to a wide range of real-world code.
Our �ndings also motivate further research and update previously held
assumptions. Cryptomining, once a major use case for WebAssembly,
has been marginalized, giving rise to more and more diverse, benign
use cases. We also �nd that 29% of the binaries on the web lack useful
information for program understanding, e.g., function names, which
calls for techniques to decompile and reverse engineer WebAssembly.
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With this work, we address the challenge of low data availability
(c2) by collecting a dataset of WebAssembly binaries that is 58 times
larger than the largest previous dataset. We make our dataset publicly
available and use it ourselves in later research projects. When studying
the dataset, several analyses focus again on security (c3), this time
also measuring how many potentially dangerous imports there are, and
which allocators are used in practice.

wasabi In Chapter 5, we present Wasabi, the �rst general-purpose
framework for dynamically analyzing WebAssembly. As discussed in
Section 1.2, dynamic analysis can be vital to improve the performance,
security, and reliability of applications. However, building such tools
from scratch requires knowledge of low-level details of the language
and its runtime, and manual modi�cation of binaries is laborious and
error-prone. Instead, Wasabi provides an easy-to-use, high-level API
that allows analyses to observe any instruction at runtime, with all its
inputs and outputs. As the implementation strategy, Wasabi employs
static binary instrumentation, which automatically inserts calls to ana-
lysis hooks written in JavaScript into a WebAssembly binary. Our eval-
uation on benchmarks and real-world applications shows that Wasabi
(i) faithfully preserves the original program behavior, (ii) imposes an
overhead that is reasonable for heavyweight dynamic analysis, and
(iii) makes it straightforward to implement various dynamic analyses,
including instruction counting, call graph extraction, memory access
tracing, and taint analysis.

Binary instrumentation for WebAssembly faces several challenges
due to static types (c4) and other language features, e.g., nested code
blocks (c1). Instrumentation must be intertwined with type checking
to handle type-polymorphic instructions. While instructions can have
polymorphic type, functions in WebAssembly cannot. We thus devise
on-demand monomorphization for the inserted analysis hooks. The
lack of existing libraries (c5), also prompted us to develop our own
parser and binary rewriter, on which we build in follow-up work.

fuzzm Chapter 6 presents Fuzzm, the �rst binary-only fuzzer for
WebAssembly. As discussed in Chapters 3 and 4, WebAssembly bina-
ries are often compiled from memory-unsafe languages, causing ex-
ploitable vulnerabilities. This project addresses the problem of detect-
ing and preventing such vulnerabilities. Fuzzm consists of two parts.
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First, it instruments WebAssembly binaries to detect spatial memory
errors on the stack and heap at runtime. Additionally, it instruments
the binaries to collect approximate coverage information as feedback
for the fuzzer. Second, we e�ciently combine the native fuzzer AFL
and a WebAssembly VM running the instrumented program. We eval-
uate Fuzzm with 28 real-world WebAssembly binaries, some compiled
from well-known software projects, others found in the wild without
access to their source code. Even though the programs run in a VM,
Fuzzm’s performance is close to native AFL in terms of executions
per second, generated inputs, and triggered crashes. Besides as an or-
acle for fuzzing, the instrumentation applied by Fuzzm also serves as
a stand-alone hardening technique to prevent exploitation of vulnera-
ble binaries. It e�ectively prevents the exploits from Chapter 3 while
imposing only between 2% to 35% runtime overhead.

This work focuses on vulnerable WebAssembly applications and how
to prevent attacks against them (c3). It reuses code for static instru-
mentation from our earlier work on Wasabi. WebAssembly’s binary
format (c5) makes it possible in the �rst place to reliably instrument
production binaries without access to their source code.

snowwhite As a low-level binary format, WebAssembly is less ac-
cessible to human inspection than source code, requiring laborious
reverse engineering. An important �rst step when reverse engineer-
ing binaries is to recover the types of functions. Thus, in Chapter 7
we present SnowWhite, a neural approach for recovering high-level
types from WebAssembly binaries. In contrast to prior learning-based
type recovery for other binary formats, SnowWhite represents the
types-to-predict in an expressive type language. It can describe a large
number of complex types instead of the �xed, and usually small type
vocabulary used previously. We formulate the type recovery as a se-
quence prediction task and build on the success of neural sequence-to-
sequence models. We evaluate SnowWhite on a large-scale dataset
of 6.3 million type samples extracted from over 300,000 WebAssem-
bly object �les. The results show that the type language is expressive,
precisely describing 1,225 types instead the 7 to 35 types considered
previously. Despite this expressiveness, the type prediction has high
accuracy, exactly predicting 44.5% (75.2%) of all parameter types and
57.7% (80.5%) of all return types within the top-1 (top-5) predictions.
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As a machine learning approach, SnowWhite su�ers from the lack
of available training data for WebAssembly (c2). This prompts us to
collect the largest dataset of WebAssembly binaries with debug infor-
mation, which is even larger than prior multi-architecture datasets for
native code. We also address the challenge of WebAssembly types be-
ing fairly low-level (c4), while at the same time bene�ting from them
being available as input features for our model.

1.6 publications and other artifacts

This dissertation is based on �ve research projects, four of which have
previously appeared in peer-reviewed publications. The dissertation
verbatim reuses material from those publications. We have also released
all source code and datasets under a permissive license, to foster inde-
pendent replication of our results, enable others to build on our work,
and make our tools available to practitioners. The mapping from the
main chapters of this dissertation to prior publications and released
artifacts is as follows.

• Chapter 3: Everything Old is New Again: Binary Security of Web-
Assembly [Lehmann, Kinder, et al. 2020]. Daniel Lehmann, Jo-
hannes Kinder, and Michael Pradel. USENIX Security Symposium
2020. Exploits, dataset, and analysis code: https://github.com/

sola-st/wasm-binary-security.
• Chapter 4: An Empirical Study of Real-World WebAssembly Bina-

ries: Security, Languages, Use Cases [Hilbig et al. 2021]. Aaron Hilbig,
Daniel Lehmann, and Michael Pradel. The Web Conference 2021
(www ’21). Dataset, collection, and analysis code: https://github.
com/sola-st/WasmBench.

• Chapter 5: Wasabi: A Framework for Dynamically Analyzing Web-
Assembly [Lehmann and Pradel 2019]. Daniel Lehmann and Michael
Pradel. International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems 2019 (asplos 2019).
Won a best paper award. Project website with demo and tutorial
material: http://wasabi.software-lab.org. Source code: https://
github.com/danleh/wasabi.

• Chapter 6: Fuzzm: Finding Memory Bugs through Binary-Only In-
strumentation and Fuzzing of WebAssembly [Lehmann, Torp, et al.

https://github.com/sola-st/wasm-binary-security
https://github.com/sola-st/wasm-binary-security
https://github.com/sola-st/WasmBench
https://github.com/sola-st/WasmBench
http://wasabi.software-lab.org
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2021]. Daniel Lehmann, Martin Toldam Torp, and Michael Pradel.
Source code and dataset: https://github.com/fuzzm/fuzzm-project.

• Chapter 7: Finding the Dwarf: Recovering Precise Types from Web-
Assembly Binaries [Lehmann and Pradel 2022]. Daniel Lehmann
and Michael Pradel. International Conference on Programming Lan-
guage Design and Implementation 2022 (pldi ’22). Source code and
dataset: https://github.com/sola-st/wasm-type-prediction.

During the PhD, the author also worked on the following research
projects and publications that are not included in this dissertation.

• Wobfuscator: Obfuscating JavaScript Malware via Opportunistic
Translation to WebAssembly [Romano, Lehmann, et al. 2022]. Alan
Romano, Daniel Lehmann, Michael Pradel, and Weihang Wang.
IEEE Symposium on Security and Privacy 2022 (s&p ’22). https:
//github.com/js2wasm-obfuscator/translator.

• Di�erential Regression Testing for REST APIs [Godefroid et al.
2020]. Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk.
International Symposium on Software Testing and Analysis 2020
(issta 2020). https://github.com/microsoft/restler-fuzzer.

• Interactive Metamorphic Testing of Debuggers [Tolksdorf et al. 2019].
Sandro Tolksdorf, Daniel Lehmann, and Michael Pradel. Interna-
tional Symposium on Software Testing and Analysis 2019 (issta
2019).

• Feedback-Directed Di�erential Testing of Interactive Debuggers
[Lehmann and Pradel 2018]. Daniel Lehmann and Michael Pradel.
Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering 2018 (esec/fse 2018).
https://github.com/sola-da/DifferentialDebuggerTesting.
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2 B AC K G R O U N D O N W E B A S S E M B LY

We took a �rst peek at the WebAssembly language and its ecosystem
in Section 1.1. To have su�cient background for later chapters, a more
thorough introduction is in order. The �rst interaction with any lan-
guage is through its syntax, so we discuss the text and binary formats
in Section 2.1. Both formats represent the same fundamental language
concepts, of which we give a tour in Section 2.2. Finally, we discuss the
surrounding ecosystem of compilers, source languages, host environ-
ments, and WebAssembly runtimes in Section 2.3.

We cannot fully cover the language and ecosystem here. Instead, we
focus on the most relevant aspects for later chapters. For more infor-
mation, we refer the interested reader to the following resources:

• The o�cial website [WebAssembly Website] provides a good over-
view and high-level intuitions. It also links to essential tools, answers
frequently asked questions, and discusses the future roadmap.

• The o�cial language speci�cation [WebAssembly Speci�cation] is
the authoritative, technical source for exact details of the binary and
text formats, execution semantics, and all language constructs.

• The documentation on MDN1 focuses on practical information for
Web developers working with WebAssembly (but not necessarily
working on WebAssembly itself).

• The WebAssembly GitHub organization and its repositories2 contain
design documents and language proposals, meeting notes of the stan-
dards committee, and the source code for the reference interpreter,
many fundamental tools, and other associated infrastructure.

• Finally, we also refer to the initial publication [Haas et al. 2017] that
introduced WebAssembly to the academic community, to the up-

1 Formerly named the Mozilla Developer Network, https://developer.mozilla.org/en-
US/docs/WebAssembly

2 https://github.com/webassembly
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dated, more concise version of the latter [Rossberg et al. 2018], and
to other publications on WebAssembly in Chapter 8.

2.1 binary and text format

Listing 1.1 shows a WebAssembly program side-by-side in the binary
and the human-readable text format. Although neither of them is the
focus of our research, it is important to discuss them in order to under-
stand later code examples and particularities of the language. We start
with the binary format, as it is the typical representation of WebAs-
sembly programs stored on disk and sent over the network. The binary
format is also what our analysis tools in Chapters 3 to 7 take as input.

binary format The binary format is designed to have the follow-
ing properties. First, it is compact. Instructions have a single-byte op-
code (e.g., 7C for the i64.add instruction); more bytes can follow for
immediate arguments (e.g., in i32.const 2 , the immediate 2 is the con-
stant pushed on the stack). All integers are encoded in the variable-
length leb128 format (Little Endian Base 128), which is also known
from dwarf debugging information [DWARF 5 Standard]. In leb128,
the most signi�cant bit of each byte marks whether more bytes follow.
E.g., the integer 7 is encoded as a single byte 07, whereas the integer
1337 is encoded as two bytes B9 A0. Program elements (types, functions,
variables, etc.) are identi�ed in the binary by integer indices. E.g., the
function declared in line 31 of Listing 1.1 is identi�ed by the function in-
dex 1, as evident by the second byte of the binary encoding of the call in
line 40. Strings and names are only present in the binary when import-
ing or exporting program elements, in the data section for initializing
memory, or in (optional) debug information.

Second, the binary format is easy and reliable to decode and validate.
We use the terms decoding, parsing, or disassembling a WebAssembly bi-
nary interchangeably. Parsing via recursive descent is simple and does
not require lookahead. There is no ambiguity as to how the current in-
put shall be parsed, unlike in native binaries, where static disassembly
and even identi�cation of function boundaries can be challenging [An-
driesse et al. 2016]. WebAssembly also strictly separates code and data,
and there is no self-modifying code. The binary format is promised to
be backwards compatible in case of future additions to the language.
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Third, parsing the binary format is fast, and can be done in a paral-
lel and streaming fashion. A binary contains multiple sections, e.g., the
type section starting in line 6 or the code section starting in line 30 of
Listing 1.1. Each section declares its length in bytes upfront, such that
an optimized parser can jump ahead to parse subsequent sections in
parallel. The order of sections is such that information required for val-
idation and compilation is available early. E.g., the type section comes
in the very beginning of the binary and the section declaring all func-
tions comes before the code section containing the function bodies. A
streaming baseline compiler [Backes 2018] can start generating native
code from the binary even when it is not fully resident in memory yet,
e.g., while still downloading the binary from the Internet.

The most important command-line tools for inspecting and manip-
ulating binaries are Binaryen3 and the WebAssembly Binary Toolkit
(wabt).4 There are also libraries for working with WebAssembly bina-
ries in di�erent programming languages,5 although many of those did
not exist when we started our research in early 2018.

text format WebAssembly binaries (.wasm) can be converted into
and generated from the human-readable text format (.wat) with the
wasm2wat and wat2wasm programs, respectively. In practice, WebAssem-
bly binaries are frequently compiled from other languages (see Sec-
tion 2.3), but small programs can also be written manually. We will
use the text format for code examples, even if we actually take the bi-
nary format as input. As evident from Listing 1.1, the text format is
based on S-expressions, i.e., parenthesized n-ary trees. This makes pars-
ing the text format simple and unambiguous. The program elements in
the text format correspond closely to the abstract language constructs,
so we will discuss them in more detail in Section 2.2.

The text format abstracts over some low-level details of the binary
format, similar to how assembly languages add convenience over writ-
ing machine code directly. Instead of referring to functions, variables,
or types by their numerical index only (e.g., call 1 would be valid syn-
tax for calling the function with index 1), indices can also be written
as $name. The name is simply converted to an integer in the binary for-

3 https://github.com/WebAssembly/binaryen
4 https://github.com/WebAssembly/wabt
5 E.g., https://github.com/bytecodealliance/wasm-tools, https://github.com/

xtuc/webassemblyjs, https://github.com/wasdk/wasmparser
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mat. Furthermore, elements in the text format need not be laid out in
the same order as in the binary format. E.g., functions can be written
with their type inlined into the declaration, such as

(func $foo (type (param i32) (return i64)) ...)

and wat2wasm takes care of generating the necessary entries in the type
section of the binary. Similarly, import and export names can be di-
rectly attached to declarations. Finally, the text format supports com-
ments, which are lost in the binary.

2.2 language concepts

Regardless of the representation, programs use the same fundamental
language concepts, which we discuss in the following.

module structure Figure 2.1 gives a simpli�ed abstract syntax
for WebAssembly binaries. One WebAssembly binary corresponds to
one module with several elements. A module contains multiple func-
tions, multiple globals (global variables), at most one table (used in in-
direct calls) and at most one memory. Functions, globals, tables, and
memories can be imported from the host environment (as in the ex-
ample of Listing 1.1), or locally de�ned in the module. They can also be
exported under (potentially) multiple names. Locally de�ned functions
have a function body in the code section, and locally de�ned globals
have an initialization expression. Functions and globals are ordered.
Their implicit index uniquely identi�es them.

stack and variables As evident from the grammar in Figure 2.1,
instructions in WebAssembly do not take explicit operands or registers
as arguments. Instead, they execute on an abstract stack machine. In-
structions pop their inputs from an implicit operand stack and push
their results to the stack again. To store common subexpressions, for
mutable data, and to duplicate stack values, WebAssembly also features
an unlimited number of locals (local variables). Those need to be de-
clared in the beginning of a function body (see code in Figure 2.1).

The local.set and global.set instructions pop a value from the
stack and write it to the corresponding variable. Conversely, local.get
and global.get push the current value of a variable onto the stack and
local.tee writes a local, but keeps the value on the stack. A function
can only access its own local variables and its own operand stack. Only
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module := module function∗ global∗ table ? memory ? (modules)

function := func typefunc (import | code ) export∗

global := global typeval (import | init ) export∗

table := table import ? idxfunc
∗ export∗

memory := memory import ? byte∗ export∗

import := import ("module name", "name")
export := export "name"

code := (local typeval )∗ instr∗

init := instr∗

instr := nop | unreachable (instructions)
| typeval.const value
| unary | binary
| local.(set | get | tee) idxlocal | global.(set | get) idxglobal
| drop | select

| typeval.load | typeval.store | memory.size | memory.grow

| block instr∗ end | loop instr∗ end | if instr∗ else instr∗ end
| br label | br_if label | br_table label∗ label

| call idxfunc | call_indirect typefunc | return

unary := i32.eqz | ... | f32.neg | ... | f32.convert_s/i32 | ...
binary := i32.add | ... | i32.eq | ...

typeval := i32 | i64 | f32 | f64 (types, labels, indices)
typefunc := [typeval ∗] → [typeval ?]

label ∈ N
idx func | global | local ∈ N

Figure 2.1: A (simpli�ed) abstract syntax for WebAssembly modules.
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1 i32.const 42 ;; Simple type: [] → [i32]
2 local.get $x ;; Type depends on context, here on type of local $x.
3 call $f ;; Type depends on context, here on type of function $f.
4 drop ;; Polymorphic type [g ] → [], where g depends on the type
5 ;; at the top of the abstract type stack at this point.

Listing 2.1: Example for type checking WebAssembly instructions, in-
cluding polymorphic ones.

global variables (and memory) are shared across functions. The evalu-
ation stack, locals, and globals are managed by the WebAssembly VM.

types Every function, instruction, and variable in WebAssembly is
statically typed. There are only four primitive value types: 32 and 64-bit
integers (i32/i64) and single and double precision ieee 754 �oating-
point numbers (f32/f64). In particular, there are no classes, objects, ar-
rays, or other aggregate types. Source-level types are thus lowered to
primitive types (and data in memory) during compilation to WebAs-
sembly. Functions and instructions have a function type, with an un-
limited number of inputs and up to one result.6

Sequences of instructions are type checked by statically “evaluat-
ing” them with an abstract type stack in place of the runtime operand
stack. Listing 2.1 shows an example. Most instructions have a �xed type
(line 1). Some instructions require a context for type checking, e.g., the
type of other functions or variables (lines 2 and 3). Few instructions
have a polymorphic type, namely drop (which removes the current
stack top), and select (which pushes one of two values depending on
a condition). Their type does not depend on a �xed context, but on the
current type stack, i.e., the previously executed instructions (line 4).

control-flow WebAssembly uses structured control-�ow, which
is unusual for a low-level bytecode. The grammar in Figure 2.1 shows
that block, loop, if, and else organize instructions into well-nested
blocks, terminated by a matching end instruction. Blocks may be nested
arbitrarily deep. The left side of Listing 2.2 gives an example.

Branch instructions (br, br_if, and br_table) can only target blocks
in which they are enclosed. The branch target is encoded as a rela-
tive block label. This label is a non-negative integer, where 0 indicates

6 A later language extension allows an unlimited number of results as well. We focus
on the initial version of WebAssembly here.
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1 block ;; Relative label: 1
2 block ;; Relative label: 0
3 br 1 ;; Jumps out of
4 end ;; the outer block.
5 end
6 ;; Execution continues here.

7 loop
8 ...
9 br 0 ;; Restarts the loop.
10 ...
11 end

Listing 2.2: Nested blocks and structured control-�ow in WebAssembly.

that the branch is targeting the immediately enclosing block, 1 is that
block’s parent block, and so on. Depending on the target block type, the
branch either jumps out of the block (thus a forward jump, for block

and if/else), or restarts the block (for loops, thus a backward jump).
Listing 2.2 illustrates the di�erence with two examples.

For conditional control-�ow, br_if ; pops an i32 condition 2 from
the stack and jumps to target ; if 2 is non-zero. The if/else blocks add
no expressiveness, but can sometimes encode the same behavior more
compactly. Multi-way branches are supported via br_table ;0 . . . ;= ,3 . It
pops an i32 from the stack and uses it as an index 8 into its branch table,
which is a list of ;8 labels that is statically encoded into the instruction.
If the index is out of bounds (i.e., 8 > =), it jumps to the default label 3 .

Comparing WebAssembly’s control-�ow with native code, there are
two notable restrictions. First, all branch targets are statically declared.
In particular, there are no unrestricted indirect jumps, such as jmp *%reg
in x86, which limits abuse by runtime attacks. Second, nested blocks
and relative branch labels rule out irreducible control-�ow, i.e., jumps
into the middle of blocks or loops. For most programs in most source
languages, this is not a limitation. If programs have irreducible control-
�ow (e.g., using goto), it can always be encoded as structured control-
�ow, e.g., with the Relooper algorithm [Zakai 2011].

function calls The call instruction implements direct calls. The
instruction has the same type as the called function. It pops the argu-
ment values from the caller’s evaluation stack, executes the function,
and pushes the result onto the caller’s stack again. Inside a function, the
= arguments are available as local variables with indices 0...= − 1. This
allows pushing arguments multiple times onto the stack via local.get.
At the end of a function, the last value on the stack is returned implic-
itly. There is also an explicit return instruction, e.g., for early returns.
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Instructions

table Section Functions            (statically typed)

...
<push some value>
call_indirect [i32, i32] → [ ]

0 1

1 2

2 (empty)

3 2

... ...

Table
index

(func $0  (param i32) (return i32)
code...

)
(func $1  (param) (return)

code...
)
(func $2  (param i32 i32) (return)

code...
)
...

Function
index

Target type, 
statically encoded

Figure 2.2: Indirect function calls via the module’s table.

The call_indirect instruction is used to implement runtime dis-
patch, e.g., for function pointers or virtual functions. Figure 2.2 illus-
trates how it works. The instruction pops an i32 value from the stack,
which it uses to index into the table that is part of the module (cf. Fig-
ure 2.1). The table maps the index to a function, which is subsequently
called. Functions can be in the table multiple times and not every table
entry must be �lled. Besides the table index, the call_indirect instruc-
tion also pops the function arguments from the stack, like a regular call.
The VM checks at runtime that the target function is type-compatible
with the function type that is statically encoded into the call_indirect
instruction. If not, execution fails with a runtime type error.

unmanaged, linear memory For storing long-lived and aggre-
gate data, each WebAssembly module has at most one linear memory.
It can simply be thought of as a global array of consecutive bytes. Un-
like memory in other bytecode languages, there is no garbage collec-
tion provided by the VM and the memory is under complete control of
the program, which is why we call it unmanaged. The memory is zero-
initialized by default; segments of it can also be initialized at program
startup with byte sequences from the data section, like so:

;; Explicitly initialized memory at offset 1024.

(data (i32.const 1024) "a null-terminated string\00")

The memory can be grown at runtime in page-size increments (64 KiB)
using the memory.grow instruction, and its current size can be queried
with memory.size. For e�cient dynamic allocation, a WebAssembly bi-
nary typically includes its own allocator code, which provides func-
tions such as malloc and free to the rest of the program.
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The memory spans a 32-bit address space, and i32 serves as the
pointer type.7 While the memory contents are just untyped bytes, C .load
and C .store instructions are typed. E.g., an f32.load instruction takes
an i32 value from the operand stack, reads four bytes from memory at
that address, and pushes the result as an f32 value onto the stack again.
If the address is larger than the current size of the memory, execution
fails with a runtime error.

It should not be possible to access data in the underlying native sys-
tem memory from inside a WebAssembly program, except for the re-
gion that is allotted for linear memory by the VM. VMs implement this
via bounds checking or (on 64-bit architectures) by installing guard
pages above and below the linear memory region. This makes WebAs-
sembly a good technology for software fault isolation (SFI) and mem-
ory sandboxing [Narayan, Disselkoen, Gar�nkel, et al. 2020; Zakai 2020].
In Chapter 3, we analyze the implications of linear memory for the se-
curity of WebAssembly programs themselves.

language extensions What we have described so far is version
1.0 of WebAssembly, often referred to as the MVP (Minimum Viable
Product). Since its standardization in 2019 [WebAssembly Speci�ca-
tion], several extensions have been proposed and some of them re-
cently standardized.8 For a proposal to become standardized, among
other requirements, it must have a formal speci�cation and at least
two independent, production-quality implementations, e.g., in two dif-
ferent browser engines.9 Even when standardized, extensions are op-
tional and not all runtimes support them. For that reason, most com-
pilers generate binaries that do not use extensions by default, and ap-
plications that do use them, may provide a fallback (sometimes at the
cost of lower performance).

There are extensions that add only a small number of instructions,
such as additional �oat-to-integer conversions,10 but also more exten-
sive changes, e.g., adding vector types and hundreds of SIMD opera-
tions,11 which can be very useful for high-performance signal process-

7 There is a proposal for a 64-bit address space language extension, but it is not yet
standardized or widely supported. See https://github.com/WebAssembly/memory64.

8 https://webassembly.org/roadmap/, https://github.com/WebAssembly/proposals
9 https://github.com/WebAssembly/meetings/blob/main/process/phases.md

10 https://github.com/WebAssembly/spec/blob/master/proposals/nontrapping-
float-to-int-conversion/Overview.md

11 https://github.com/WebAssembly/simd
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ing. Other proposals strive to remove language restrictions, such as
allowing multiple return values and 64-bit memory addresses.12

Di�erent research projects in this dissertation handle extensions dif-
ferently. When we developed Wasabi (Chapter 5), no extensions were
standardized yet, so it assumes WebAssembly binaries of version 1.0.
We do not think there are principled hindrances to adapting it for the
currently standardized extensions, beyond the engineering e�ort re-
quired. As Fuzzm (Chapter 6) builds on the same infrastructure, it in-
herits this limitation. On the other hand, our study and the dataset in
Chapter 4 contains several binaries with extensions. Our work on the
binary security of WebAssembly (Chapter 3) is orthogonal to most lan-
guage extensions, and we discuss the potential positive impact of exten-
sions to mitigate our attacks in Section 3.6. Finally, our latest project,
SnowWhite in Chapter 7, processes its input data with wasmparser,13
which can handle all currently standardized language extensions.

2.3 ecosystem

Besides the language, there is also an ecosystem of related technologies
around WebAssembly. For example, Figure 1.1 shows di�erent source
languages that compile to WebAssembly and multiple host environ-
ments, where WebAssembly binaries can be run. We discuss this ecosys-
tem in the following.

host environment WebAssembly modules are executed in a host
environment, such as the browser, Node.js, or a stand-alone WebAssem-
bly runtime. The host is responsible for instantiating the module, that
is, providing imported functions and setting up execution of the mod-
ule. In browsers, JavaScript code can instantiate and run a WebAssem-
bly binary through the WebAssembly.instantiate function and related
APIs.14 Exported elements of the module can be accessed from the host,
allowing, e.g., JavaScript code to call exported WebAssembly functions.

Because WebAssembly modules share nothing by default and Web-
Assembly has no standard library, a WebAssembly program without
a host environment cannot perform I/O or access the network. Such

12 Both extensions were mentioned earlier in this section.
13 https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasmparser
14 https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_

API
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functionality is provided through imported host functions. The mod-
ule’s memory can also be imported or exported to allow shared ac-
cess with the host. In the browser, any JavaScript function can be im-
ported into a WebAssembly module, including client-side APIs such
as XmlHttpRequest, document.write, or eval. Other host environments
provide other APIs to WebAssembly modules, e.g., modules running in
Node.js could import exec to execute shell commands, and modules
running on a stand-alone VM may import functions for �le system ac-
cess. Because WebAssembly supports only number types, non-primitve
data, e.g., strings or objects, may require marshalling through memory
and then passing around pointers as numbers.15

wasi In principle, every host environment can provide its own set
of functions to WebAssembly modules. However, to make not only the
WebAssembly bytecode portable, but also the binaries portable across
di�erent host environments, there is an ongoing e�ort to standard-
ize on the interface between the host environment and the module.
The WebAssembly System Interface (wasi) speci�es several basic APIs
[Clark 2019; WASI Website], similar to a syscall interface for an operat-
ing system or POSIX. This includes functions and datatypes for �lesys-
tem access, network sockets, clocks, random number generation, etc.

Compilers and source languages targeting WebAssembly can then
generate binaries with imports conforming to this interface. E.g., there
is a (partial) libc implementation on top of wasi. On the runtime side,
there is experimental wasi support in Node.js16 and in several stand-
alone runtimes, such as Wasmtime, Wasmer, and WAVM.17 Our Fuzzm
work in Chapter 6 assumes binaries that use wasi, to execute them in
the Wasmtime runtime that we integrated into AFL.

compilers and source languages Its low-level instructions
and unmanaged memory make WebAssembly a good compilation tar-
get from systems languages, such as C, C++, and Rust. Indeed, the �rst
compiler for WebAssembly was Emscripten,18 which is based on Clang
and compiles C and C++ code for running it in browsers. Originally,
Emscripten compiled to asm.js, which heavily in�uenced WebAssem-

15 A language extension adds �rst-class reference types to WebAssembly, which allows
to pass objects between the host and the WebAssembly module. See https://github.
com/WebAssembly/reference-types.

16 https://nodejs.org/api/wasi.html
17 [Wasmtime Website], https://wasmer.io, https://wavm.github.io
18 [Zakai 2011], https://emscripten.org
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bly and subsequent got superseded by it as outlined in the introduction.
In addition to compiling the source program, Emscripten also generates
JavaScript code, e.g., for emulating a �lesystem in memory, or making
printf in C output to the browser console. Emscripten can compile
large, complex C and C++ projects to WebAssembly, including the ap-
plications mentioned in the introduction.

Various WebAssembly compilers from other source languages exist
as well, e.g., the Rust compiler,19 Go,20 AssemblyScript, which is a sub-
set of TypeScript,21 or the Asterius compiler for Haskell. Another strat-
egy is to compile language runtimes to WebAssembly, e.g., Pyodide is
a port of CPython to WebAssembly,22 and Microsoft’s Blazor allows to
run CIL (i.e., .NET code) in browsers with WebAssembly.23

19 https://www.rust-lang.org/what/wasm
20 https://tinygo.org/docs/guides/webassembly/
21 https://www.assemblyscript.org
22 https://pyodide.org, https://github.com/pyodide/pyodide
23 https://docs.microsoft.com/de-de/aspnet/core/blazor/
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3 O N T H E B I N A R Y S E C U R I T Y O F
W E B A S S E M B LY

In the previous chapter (Chapter 2), we have introduced WebAssembly.
It has some notable di�erences to native code, e.g., structured control-
�ow and sandboxed memory, often with the explicit goal of protect-
ing the host against malicious WebAssembly binaries. However, an
equally important aspect of WebAssembly security is less understood:
Are WebAssembly binaries themselves secure against runtime attacks?
Many WebAssembly programs are compiled from memory-unsafe lan-
guages (we will give a more detailed account in Chapter 4). Can vul-
nerabilities in those unsafe source languages translate to vulnerable
WebAssembly binaries? If yes, how can they be exploited?

In this chapter, we answer those questions and compare how Web-
Assembly stacks up against native code. We �nd that many classic vul-
nerabilities that, due to common mitigations, are no longer exploitable
in native binaries, are completely exposed in WebAssembly. Moreover,
WebAssembly enables unique attacks, such as overwriting supposedly
constant data or manipulating the heap using a stack over�ow. We
present a set of attack primitives for overwriting sensitive data in mem-
ory and triggering unexpected behavior by diverting control �ow or
manipulating the host environment. We also provide a set of vulnera-
ble proof-of-concept applications on three di�erent WebAssembly host
environments (browsers, Node.js, and a stand-alone VM), and attack
them with end-to-end exploits. An empirical risk assessment on real-
world binaries and SPEC CPU programs compiled to WebAssembly
shows that our attack primitives are likely to be feasible in practice.
Overall, our �ndings show a perhaps surprising lack of binary security
in WebAssembly. On a positive note, we discuss potential protection
mechanisms to mitigate the resulting risks.

This chapter shares large parts of its material with the corresponding
publication [Lehmann, Kinder, et al. 2020]. The author of this disserta-
tion is also the main author of that paper and did all of the implemen-
tation, evaluation, and the majority of the writing.

29
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3.1 motivation and contributions

WebAssembly is often touted for its safety and security. For example,
both the initial publication [Haas et al. 2017] and the o�cial website
[WebAssembly Website] highlight security on the �rst page. Indeed,
in WebAssembly’s core application domains, security is paramount:
on the client side, users run untrusted code from websites in their
browser; on the server side in Node.js, WebAssembly modules oper-
ate on untrusted inputs from clients; in cloud computing, providers
run untrusted code from users; and in smart contracts, programs may
handle large sums of money.

There are two main aspects to the security of the WebAssembly
ecosystem: (i) host security, the e�ectiveness of the runtime environ-
ment in protecting the host system against malicious WebAssembly
code; and (ii) binary security, the e�ectiveness of the built-in fault isola-
tion mechanisms in preventing exploitation of otherwise benign Web-
Assembly code. Attacks against host security rely on implementation
bugs [Plaskett et al. 2018; Silvanovich 2018] and therefore are typically
speci�c to a given WebAssembly VM. Attacks against binary security
– the focus of this chapter – are speci�c to each WebAssembly pro-
gram and its compiler toolchain. The design of WebAssembly includes
various features to ensure binary security. For example, the memory
maintained by a WebAssembly program is separated from its code, the
evaluation stack, and the data structures of the executing VM. To pre-
vent type-related crashes and attacks, binaries are designed to be eas-
ily type-checked, which they are statically before execution. Moreover,
WebAssembly programs can only jump to designated code locations, a
form of fault isolation that prevents many classic control-�ow attacks.

Despite all these features, the fact that WebAssembly is designed as
a compilation target for languages with manual memory management,
such as C and C++, raises a question: To what extent do memory vul-
nerabilities a�ect the security of WebAssembly binaries? The original
WebAssembly paper addresses this question brie�y by saying that “at
worst, a buggy or exploited WebAssembly program can make a mess of
the data in its own memory” [Haas et al. 2017]. A WebAssembly design
document on security1 concludes: “common mitigations such as data

1 https://github.com/WebAssembly/design/blob/master/Security.md#memory-
safety

https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
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execution prevention (DEP) and stack smashing protection (SSP) are
not needed by WebAssembly programs”.

This chapter analyzes to what extent WebAssembly binaries can be
exploited and demonstrates that the above answers miss important
security risks. Comparing the exploitability of WebAssembly binaries
with native binaries, e.g., on x86, shows that WebAssembly re-enables
several formerly defeated attacks because it lacks modern mitigations.
One example are stack-based bu�er over�ows. They are e�ective again,
because WebAssembly binaries do not deploy stack canaries. More-
over, we �nd attacks not possible in this form in native binaries, such
as overwriting string literals in supposedly constant memory. If such
manipulated data is later interpreted by critical host functions, e.g., as
JavaScript code, this can lead to further system compromise. Our work
mostly focuses on binaries compiled with LLVM-based compilers, such
as Emscripten and Clang for C and C++ code, or the Rust compiler,
since they are currently the most popular compilers targeting WebAs-
sembly, as we will show in Chapter 4.

After our analysis of the deployed (and missing) security features in
WebAssembly, we take the position of an active adversary and identify
a set of attack primitives that can be used to build end-to-end exploits.
Our attack primitives span three dimensions: (i) obtaining a write prim-
itive, i.e., the ability to write memory locations in violation of source-
level semantics; (ii) overwriting security-relevant data, e.g., constants
or data on the stack and heap; and (iii) triggering a malicious action
by diverging control �ow or manipulating the host environment. Fig-
ure 3.1 provides an overview of the attack primitives and (missing) de-
fenses discussed for WebAssembly.

To show that our attack primitives are applicable in practice, we
discuss a set of vulnerable example WebAssembly applications and
demonstrate end-to-end exploits against each one of them. The attacked
applications cover three di�erent WebAssembly platforms: client-side
web applications in browsers, server-side applications on Node.js, and
applications for stand-alone WebAssembly VMs.

In our quantitative evaluation, we then estimate the feasibility of
attacks against other binaries. We collect a set of binaries from real-
world web applications and compiled from large C and C++ programs
of the SPEC CPU benchmark suite. Regarding overwriting data, we
�nd that one third of all functions make use of the unmanaged (and
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Figure 3.1: An overview of attack primitives ( ) and (missing) defenses
( ) in WebAssembly, later detailed in this chapter.

unprotected) stack in linear memory. Regarding control-�ow attacks,
we �nd that every second function can be reached from indirect calls
that take their target directly from linear memory. We also compare
WebAssembly’s runtime type-checking of indirect calls with control-
�ow integrity defenses for native code.

Our work improves upon initial discussions of WebAssembly binary
security in the non-academic community [Bergbom 2018; Denis 2018;
Foote 2018; McFadden et al. 2018] by providing a systematic analysis,
a generalization of attacks, and data on real binaries (see Chapter 8 for
a more detailed comparison).

contributions In summary, this chapter contributes:

• An in-depth security analysis of WebAssembly’s linear memory and
its use by programs compiled from languages such as C, C++, and
Rust. We also analyze which common memory protections are miss-
ing from WebAssembly, and how this can make some code less se-
cure than when compiled to a native binary (Section 3.2).
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• A set of attack primitives, derived from our analysis and generalized
from previous work, along with a discussion of mitigations that the
WebAssembly ecosystem does, or does not, provide (Section 3.3).

• A set of example vulnerable applications and end-to-end exploits, which
show the consequences of our attacks on three di�erent WebAssem-
bly platforms (Section 3.4).

• Empirical evidence that both data and control-�ow attacks are likely
to be feasible, measured on WebAssembly binaries from real-world
web applications and compiled from large C and C++ programs (Sec-
tion 3.5).

• A discussion of possible mitigations to harden WebAssembly bina-
ries against the described attacks (Section 3.6). We make our attack
primitives, end-to-end exploits, and analysis tool publicly available2

to aid in this process.

3.2 security analysis of linear memory

We now begin our security analysis of WebAssembly binaries and focus
�rst on one of their key components: linear memory. We analyze how
compilers arrange program data in linear memory and investigate how
and which standard memory protection mechanisms are applied.

3.2.1 Managed vs. Unmanaged Data

We distinguish managed and unmanaged data in WebAssembly. Man-
aged data, i.e., local variables, global variables, values on the evalua-
tion stack, and return addresses, reside in dedicated storage handled
directly by the VM. WebAssembly code can only interact with man-
aged data implicitly through instructions, but not directly modify its
underlying storage. E.g., local.get 0 reads the local with index 0, but
at no point is the actual, underlying address of the local visible to the
program. Unmanaged data is all data that resides in linear memory. It
is completely under the control of the program and typically organized
by compiler-generated code.

There are several reasons for putting unmanaged data in linear mem-
ory. Since WebAssembly has only four primitive types and because

2 https://github.com/sola-st/wasm-binary-security

https://github.com/sola-st/wasm-binary-security
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managed data can hold instances of only those primitive types, all non-
scalar data, such as strings, arrays, or structs, must be stored in linear
memory. Because managed data has no address, any variable whose ad-
dress is ever taken in the source program, e.g., function out parameters,
must also be stored in linear memory.

Because non-scalar data or data whose address is taken can appear
in the source program as function-scoped, global data, or data with dy-
namic lifetime, the compiler sets aside distinct areas in linear memory
for a stack, a heap, and static data. We will refer to the compiler-created
stack in linear memory as the unmanaged stack to distinguish it from
the managed evaluation stack, which holds intermediate values of in-
structions, and the managed call stack, which holds locals and return
addresses.3 Importantly, this means a lot of data lies in unmanaged lin-
ear memory, not under protection of the VM, but instead under full
control of memory read and write instructions in the program.

3.2.2 Memory Layout

Native ELF binaries4 contain sections for zero-initialized data (.bss),
read- and writable data (.data), read-only data (.rodata), code (.text),
a stack, and a heap. The compilers we analyze – Emscripten, Clang,
and the Rust compiler – all perform a similar subdivision of the linear
memory in WebAssembly binaries (Figure 3.2). The heap must always
be placed at the end of linear memory, such that it can grow towards
higher addresses and make use of additional memory when it is re-
quested from the host environment. Below the heap are the stack and
static data. Since there is no read-only memory in WebAssembly (more
on that shortly), there is no distinction between .data and .rodata.
Since linear memory is always zero-initialized, there is also no need for
a dedicated .bss section. In other words, .data, .rodata, and .bss are
not explicitly distinguished in WebAssembly. In the following, when
we refer to the data section in linear memory, we mean all such data

3 This is a frequent point of confusion, so to reiterate, there are three distinct types of
stacks in a WebAssembly program: The evaluation stack of the WebAssembly abstract
machine, as introduced in Section 2.2, which is managed by the VM; the managed call
stack, which contains the currently active functions, their locals, and return addresses,
also managed by the VM; and the unmanaged stack in linear memory, for function-
scoped unmanaged data. The latter is the security critical one in this work.

4 Other native binary formats, such as PE binaries on Windows, have analogous sections,
but for readability we compare only with ELF here.
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Figure 3.2: Linear memory layouts for di�erent compilers and backends.

that is valid for the whole lifetime of the program, e.g., statically ini-
tialized string constants, global arrays, or zero-byte ranges.

The memory layout, i.e., the order of stack, heap, and data in linear
memory, depends on the compiler. Figure 3.2a shows that the fastcomp
backend of Emscripten (the �rst WebAssembly backend and thus fre-
quently used until its deprecation in October 20195) places the static
data at the beginning of linear memory, followed by the stack, and then
the heap. The stack grows upwards (i.e., towards higher addresses) in
this con�guration. More recently, LLVM has gained its own, in-tree
WebAssembly backend,6 also called the upstream backend, which is
used by Emscripten, Clang, and the Rust compiler. That is, in most
WebAssembly binaries produced today, the stack grows downwards
(similar to ARM and x86). The di�erence between Figure 3.2b and 3.2c
is in the relative order of stack and statically-allocated data in linear
memory. In Emscripten and Clang, static data comes �rst by default.
In Rust and in Clang with the linker option -stack-first, the stack
comes �rst and static data sits between stack and heap.

3.2.3 Memory Protections

One of the most basic protection mechanisms in native programs is vir-
tual memory with unmapped pages. A read or write to an unmapped
page triggers a page fault and terminates the program, hence an at-
tacker must avoid writing to such addresses. WebAssembly’s linear

5 https://emscripten.org/docs/introducing_emscripten/release_notes.html
6 https://v8.dev/blog/emscripten-llvm-wasm

https://emscripten.org/docs/introducing_emscripten/release_notes.html
https://v8.dev/blog/emscripten-llvm-wasm
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Table 3.1: Exploitation under di�erent layouts of linear memory.

Compiler
Data that can be corrupted with a. . .

Stack-based Bu�er Over�ow Stack Over�ow

emcc 1.39.7 (fastcomp) heap heap
emcc 1.39.7 (upstream) caller, heap data
clang 9 (WASI) caller, heap data
clang 9 (WASI with -stack-first) caller, static data, heap ∅
rustc 1.41 (WASI) caller, static data, heap ∅

memory, on the other hand, is a single, contiguous memory space with-
out any holes, so every pointer ∈ [0,max_mem] is valid. As long as the
attacker stays within this bound, any read or write will succeed. This is
a fundamental limitation of linear memory with severe consequences.
Since one cannot install guard pages between static data, the unman-
aged stack, and the heap, over�ows in one section can silently corrupt
data in adjacent sections. Table 3.1 shows that stack-based bu�er over-
�ows and stack over�ows are thus very powerful attack primitives in
WebAssembly. They can, depending on the layout, overwrite data in
the heap, in a caller’s stack frame, and static data. We will exploit this
in the attack primitives of Section 3.3.

Virtual memory in native execution also allows setting page protec-
tion �ags, i.e., marking pages exclusively as readable, writable, or exe-
cutable. In WebAssembly, linear memory is non-executable by design,
as it cannot be jumped to. However, WebAssembly does not allow mark-
ing memory as read-only. Instead, all data in linear memory is always
writable! This is another quite surprising limitation of linear memory
and enables one of our attack primitives in Section 3.3.

As an additional probabilistic defense in native execution, address
space layout randomization (ASLR) [PaX Team 2002] randomly arranges
the stack, heap, and code in the address space at runtime. For a success-
ful attack, the attacker thus �rst has to obtain a pointer, e.g., to the heap,
via an information disclosure vulnerability. In WebAssembly, there is
no ASLR. WebAssembly linear memory is arranged deterministically,
i.e., stack and heap positions are predictable from the compiler and
program. Even if one were to add some form of ASLR to WebAssembly,
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linear memory is addressed by 32-bit pointers, which likely does not
provide enough entropy for strong protection [Shacham et al. 2004].

3.3 attack primitives

This section presents attack primitives that can be used to exploit vul-
nerabilities in code compiled to WebAssembly. The attack primitives
span three dimensions from which a full attack can be constructed. The
�rst dimension is about obtaining a write primitive, i.e., the ability of
an attacker to use a vulnerability for unexpected writes to memory.
The second dimension corresponds to the data that can be overwritten.
The third dimension is about triggering security-compromising behav-
ior. In principle, the primitives in these three dimensions can be freely
combined. For example, a write primitive from the �rst dimension can
overwrite any data from the second dimension to trigger any kind of
misbehavior from the third dimension.

Figure 3.1 gives an overview of the three dimensions of attack prim-
itives ( ) and mitigations designed to counter them ( ). As discussed
in detail in the following, many of the standard mitigations used when
compiling to native binaries are unused or unavailable when compiling
to WebAssembly (shown as crossed out in the �gure).

Some of the attack primitives described here are based on existing
ideas for exploiting vulnerabilities in C and C++ code compiled to na-
tive binaries. The novelty lies in the way these attacks and existing
mititations transfer, or do not transfer, to WebAssembly. Other attack
primitives (e.g., Section 3.3.1.2 and 3.3.2.3) have never been possible in
modern native systems with virtual memory and are presented here
for WebAssembly for the �rst time.

3.3.1 Obtaining a Write Primitive

Given a WebAssembly binary compiled from vulnerable C or C++ code,
there are several ways for an attacker to obtain a write primitive. In par-
ticular, we discuss those types of attacks for which there are e�ective
mitigations on native platforms, but not in WebAssembly.7

7 We do not discuss attack primitives that are possible in WebAssembly but neither
novel nor speci�c to this platform. E.g., integer over�ows exist in WebAssembly just
as they do in x86 or ARM.
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1 void parent() {
2 char parent_frame[8] = "BBBBBBBB"; // Also overwritten
3 vulnerable(readline());
4 // Dangerous if parent_frame is passed, e.g., to exec
5 }
6 void vulnerable(char* input) {
7 char same_frame[8] = "AAAAAAAA"; // Can be overwritten
8 char buffer[8];
9 strcpy(buffer, input); // Buffer overflow on the stack

10 }

(a) Vulnerable C program, over�owing buffer on the stack.

...

parent_frame

return address

stack canary

buffer

same_frame

rsp+8

rsp

Overflow
rsp+16

(b) Stack layout on x86-64 with
canaries and reordering.
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$sp+8

$sp

Overflow

Unmanaged
stack in linear 
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VM state /
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return address

(c) Unmanaged stack and VM state in
WebAssembly.

Figure 3.3: Example of a stack-based bu�er over�ow and its exploitabil-
ity in WebAssembly.

3.3.1.1 Stack-based Bu�er Over�ow

Stack-based bu�er over�ows have been widely exploited in native code
[Aleph One 1996] and, by now, there exist several mitigations against
them. We show that, contrary to current beliefs, stack-based bu�er
over�ows are exploitable in WebAssembly.

Figure 3.3 shows C code prone to over�ow because line 9 fails to
perform bounds checking. Figure 3.3b shows the stack layout when
compiling this code with a modern compiler to x86. The stack contains
local variables of the current function (same_frame and buffer), local
variables of parent functions (parent_frame), saved registers (if any),
and the return address. An over�ow of buffer could overwrite data on
the stack, in particular return addresses. However, modern compilers
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mitigate this kind of attack in several ways. To detect bu�er over�ows,
compilers place stack canaries (or stack cookies) [Cowan et al. 1998]
above local data. Before a function returns, the canary value on the
stack is compared with the original value. If the values do not match,
this indicates a bu�er over�ow and execution is aborted. To minimize
the data that could be overwritten, compilers also reorder local vari-
ables on the stack. In many cases, the compiler can also prevent poten-
tial bu�er over�ow vulnerabilities through semantics-preserving code
transformations. For example, the FORTIFY_SOURCE �ag allows the com-
piler to replace strcpywith strncpy if the length of the string is known.

Do stack-based bu�er over�ows a�ect WebAssembly? Because Web-
Assembly VMs isolate managed data, in particular, return addresses, it
is tempting to get a strong (and false) sense of security, as illustrated
by the following quote from an o�cial language design document:8

“Compared to traditional C/C++ programs, [WebAssembly’s]
semantics obviate certain classes of memory safety bugs. Bu�er
over�ows, which occur when data exceeds the boundaries of
an object and accesses adjacent memory regions, cannot a�ect
local or global variables [. . . ]. Thus, common mitigations such as
data execution prevention (DEP) and stack smashing protection
(SSP) are not needed by WebAssembly programs.”

While the premise is true (return addresses and locals are safely man-
aged), the conclusion (in italics) is not. Bu�er over�ows can compro-
mise data in WebAssembly because parts of the function-scoped data
of the source program is stored on the unmanaged stack in the linear
memory (as we discussed in Section 3.2.1).

Figure 3.3c illustrates the problem by showing the unmanaged stack
in linear memory (top), as well as the internal state of the WebAssem-
bly VM that stores the return addresses of calls (bottom). An over�ow
while writing into a local variable on the unmanaged stack, e.g., buffer,
may overwrite other local variables in the same and even in other stack
frames upwards in the stack, e.g., parent_frame. Because over�ows can
also write to data in the parent function (as we show above) and even
to other memory sections (as we show later), the primitive is more
powerful and the use of stack canaries more important than previously
realized [Bergbom 2018; McFadden et al. 2018].

8 https://github.com/WebAssembly/design/blob/master/Security.md#memory-
safety

https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
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3.3.1.2 Stack Over�ow

Another write primitive are stack over�ows, which occur due to ex-
cessive or in�nite recursion or when a local bu�er of variable size is
allocated on the stack, e.g., using alloca. If an attacker controls the
size of stack allocations, or provides corrupted input data that violates
internal assumptions of recursive functions, she may trigger a stack
over�ow. For example, recursive implementations of functions oper-
ating on trees or lists often assume acyclicity; a cyclic data structure
passed to such a function can then lead to in�nite recursion.

On most native platforms, stack over�ows will cause the program
to crash as the stack grows into a special guard page that separates the
stack from other areas of memory. In WebAssembly, such protections
do not exist for the unmanaged stack, so an attacker-controlled stack
over�ow can be used to overwrite potentially sensitive data following
the stack (as discussed for di�erent memory layouts in Section 3.2.2).

3.3.1.3 Heap Metadata Corruption

Another primitive an attacker may use to write memory in WebAs-
sembly programs is to corrupt heap metadata of the memory allocator
statically linked into a WebAssembly binary. Because WebAssembly
de�nes only a low-level memory.grow operation, and no allocator is pro-
vided by the host environment, compilers include a memory allocator
as part of the compiled binary (cf. Section 2.2). Since the binary is often
downloaded from the Internet right before execution, the code size of
the allocator is an important consideration. The Emscripten compiler
therefore lets developers choose between the default allocator, based
on dlmalloc, and the simpli�ed allocator emmalloc that reduces the �-
nal code size. Similarly, Rust programs can choose a more lightweight
allocator when compiling to WebAssembly, called wee_alloc.9

While standard allocators, such as dlmalloc, have been hardened
against a variety of metadata corruption attacks, simpli�ed and light-
weight allocators are often vulnerable to them. We �nd both emmalloc

and wee_alloc to be vulnerable to metadata corruption attacks, which
we illustrate for a version of emmalloc in the following.10

9 https://github.com/rustwasm/wee_alloc
10 Recently, emmalloc’s implementation was slightly changed, but it is still vulnerable

against this type of attack. We provide an exploit against the newer version as well in
our supplementary material.

https://github.com/rustwasm/wee_alloc
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1 struct FreeInfo { FreeInfo* prev; FreeInfo* next; };
2 struct Chunk {
3 size_t used : 1; size_t size : 31;
4 Chunk* prev;
5 union { // Depending on whether the chunk is free or not.
6 char payload[];
7 FreeInfo freeInfo;
8 };
9 };

10 // Called on alloc2, before merging it into alloc1.
11 void removeFromFreeList(Chunk* chunk) {
12 FreeInfo* freeInfo = chunk->freeInfo;
13 freeInfo->prev->next = freeInfo->next; // mirrored
14 freeInfo->next->prev = freeInfo->prev; // write
15 }

(a) Excerpt from the emmalloc allocator (edited for clarity).

size prev payload size prev pay        load

alloc1 alloc2

1used
bit

1

(b) Heap layout before the over�ow: two adjacent chunks.

size prev payload size prev
FreeInfo

prev next

Fake free chunk

1

free bit

0

Overflow

un-
used value

Mirrored overwrite:

prev
+0

prev
+4

value

next

(c) Heap layout after an over�ow of alloc1: manipulated metadata causes a
mirrored write to a chosen location when executing free.

Figure 3.4: Example of a heap metadata corruption in emmalloc after
an over�ow on the heap.
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When deallocating a chunk of memory by calling free, allocators
try to merge as many adjacent free chunks as possible into a single
larger one to avoid fragmentation. This gives rise to the classical unlink
exploit [Anonymous 2001; Kaempf 2001] shown in Figure 3.4. Since
emmalloc is a �rst-�t allocator, it will return the �rst chunk in the free
list large enough to satisfy an allocation request. Thus, two directly
following allocation requests yield two chunks adjacent to each other
in memory, such as alloc1 and alloc2 in Figure 3.4b. Lines 1 to 9 of
emmalloc’s source code in Figure 3.4a show that the metadata of each
chunk starts with a bit indicating whether the current chunk is free
or not, the chunk’s size, a pointer to the preceding chunk, and �nally
either the payload (raw bytes) or a FreeInfo struct, which in a benign
allocation makes that chunk part of a doubly linked list of free chunks.

Given an over�ow of data in alloc1 (e.g., due to a memcpy with the
wrong length), an attacker can write to the directly adjacent metadata
of alloc2 to clear the used bit and set up a “fake” FreeInfo struct (Fig-
ure 3.4c). Finally, when alloc1 is freed, the allocator checks whether
there is an opportunity to merge the newly freed chunk with an adja-
cent free chunk. Because the manipulated metadata identi�es the fol-
lowing chunk as free, the allocator calls removeFromFreeList to unlink
it in preparation for merging the two. In line 13 of Figure 3.4a, the un-
linking code of emmalloc then writes the attacker-controlled value of
the next �eld into the next �eld of another FreeInfo struct (i.e., to an
o�set of 4 bytes) at the attacker-controlled address in prev. This al-
lows the attacker to write an arbitrary value to an arbitrary address.
Due to line 14, there additionally is a mirrored write into the location
pointed to by next. Thus, to avoid a runtime error terminating exe-
cution, both prev and next must be valid pointers. Since Emscripten
allocates a stack of at least 5 MiB by default, values below 5 × 220 can
in all likelihood be safely written. This is more than su�cient for over-
writing function table indices (see Section 3.3.3.1), which are at most in
the range of thousands.

The methods discussed so far for obtaining write primitives are by no
means exhaustive, but the most direct methods from the traditional
exploit arsenal that currently do not have mitigations in WebAssembly.
Other possible attacks may exploit format string vulnerabilities, use-
after free and double-free vulnerabilities, single-byte bu�er over�ows,
or perform more sophisticated attacks on memory management.
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3.3.2 Overwriting Data

The second dimension of our attack primitives corresponds to the data
that can be overwritten to gain additional control over the execution.

3.3.2.1 Overwriting Stack Data

The unmanaged stack in linear memory contains function-scoped data,
such as arrays, structs or any value that has its address taken. With
a given fully-�exible write primitive, an attacker can overwrite any
potentially critical local data including function pointers represented
as function table indices or arguments to security-critical functions.

In contrast to native code, there are no return addresses on the un-
managed stack. Hence, a purely linear stack-based bu�er over�ow can-
not easily take control of the execution. However, the over�ow can
reach all currently active call frames if the stack is growing downwards,
as it does in most con�gurations (see Section 3.2.2). Because there are
no return addresses or stack canaries, the over�ow can overwrite local
data of all calling functions without risking early termination.

3.3.2.2 Overwriting Heap Data

The heap commonly contains data with longer lifetime and will store
complex data structures across di�erent functions. Targeted writes to
heap data are straightforward in WebAssembly due to the fully de-
terministic memory allocation (Section 3.2.3). To make matters worse,
even a linear stack-based bu�er over�ow of su�cient length can cor-
rupt heap data. The reasons are that the heap comes after the stack
in any compiler con�guration (Section 3.2.2) and that no mechanism,
such as guard pages, mitigates such attempts.

Note that with a single linear memory, there is no way to avoid the
fundamental risk of either stack over�ows or stack-based bu�er over-
�ows. If the stack grows upwards, a stack over�ow can silently corrupt
heap data. If the stack grows downwards, stack-based bu�er over�ows
are the culprit.

3.3.2.3 Overwriting “Constant” Data

The following is the perhaps most surprising target of a data overwrite,
as it is impossible in modern native platforms. Many programming lan-
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guages allow protecting data from being overwritten by declaring it
constant. This is enforced not just by the type system, but also at run-
time by placing the data in read-only memory. As WebAssembly has
no way of making data immutable in linear memory, an arbitrary write
primitive can change the value of any non-scalar constant in the pro-
gram, including, e.g., all string literals. Even more restricted write prim-
itives allow modi�cation of constant data: a stack over�ow with the
memory layout of Figure 3.2b can write into constant data; similarly,
a stack-based bu�er over�ow can reach constant data in the memory
layout of Figure 3.2c. As a result, an attacker with either of those capa-
bilities can overwrite any supposedly constant data, compromising the
guarantees intended by the programming language. We will show two
examples of exploits caused by this surprising aspect of WebAssembly
linear memory in the next section.

3.3.3 Triggering Unexpected Behavior

Given a write primitive (Section 3.3.1) and a choice of data to overwrite
(Section 3.3.2), there are several ways for an attacker to trigger unex-
pected behavior. This is the third dimension of our attack primitives.

3.3.3.1 Redirecting Indirect Calls

The closest equivalent to native control-�ow attacks in WebAssembly
is the redirection of indirect function calls. This allows for executing
code that normally would not be executed in a given context.

In Section 2.2 and Figure 2.2, we have illustrated indirect function
calls in WebAssembly. An attacker may redirect an indirect call by over-
writing an integer in linear memory that eventually serves as an index
into the table section. As described in Section 3.3.2, this integer value
may be a local variable on the unmanaged stack, part of a heap object,
in a vtable, or even a supposedly constant value.

WebAssembly has two mechanisms that limit an attacker’s ability
to redirect indirect calls. First, not all functions de�ned in or exported
into a WebAssembly binary appear in the table for indirect calls, but
only those that may be subject to an indirect call. Second, all calls, both
direct and indirect, are type checked. As a result, an attacker can redi-
rect calls only within the equivalence class of functions of the same
type, similar to type-based control-�ow integrity [Abadi et al. 2005].
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In Section 3.5 we measure to what extent these mechanisms reduce the
available call targets an attacker can choose from.

3.3.3.2 Code Injection into the Host Environment

WebAssembly modules can interact with their host environment in var-
ious ways to cause externally visible e�ects. One such way is to invoke
the notorious eval function of a JavaScript host environment, which
interprets a given string as JavaScript code. To access eval, WebAssem-
bly modules compiled via Emscripten can use emscripten_run_script

and related APIs, which execute JavaScript code in the host environ-
ment. This is available both in browsers and in server-side code exe-
cuting with Node.js.11 In browsers, also any function that adds code to
the document (e.g., document.write) can serve as an eval-equivalent
for constructing exploits. In Node.js, there is no browser sandbox, so
APIs for interfacing with the operating system give even more options
for code injection, e.g., the exec function of the child_process module.

Using the primitives described in Section 3.3.1 and Section 3.3.2, an
attacker may inject malicious code by overwriting the argument passed
to an eval-like function. For example, suppose a WebAssembly usually
invokes eval with a “constant” string of code stored in linear memory,
then an attacker could overwrite that constant with malicious code.

3.3.3.3 Application-Speci�c Data Overwrite

Depending on the application, there can be other sensitive targets for
data overwrites. For example, a WebAssembly module issuing web re-
quests through an imported function could be made to contact a di�er-
ent host by overwriting the destination string, to initiate cookie steal-
ing. As a further example, several interpreters and runtimes have been
compiled to WebAssembly, e.g., to execute CIL/.NET code directly in
the browser (Section 2.3). These kinds of environments contain many
opportunities for signi�cantly altering program behavior, e.g., by over-
writing bytecode then interpreted by the runtime.

11 https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-
with-code.html#interacting-with-code-call-javascript-from-native

https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html#interacting-with-code-call-javascript-from-native
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html#interacting-with-code-call-javascript-from-native
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Table 3.2: Overview of our end-to-end attacks, using di�erent combina-
tions of attack primitives on three host environments.

Section 3.4.1 3.4.2 3.4.3

Host
environment

Browsers
(client-side)

Node.js
(server-side)

Wasmtime
(stand-alone runtime)

Write
primitive

Stack-based
bu�er over�ow
(CVE-2018-14550)

Heap metadata
corruption

Stack-based
bu�er over�ow

Overwritten
data

Image tag in
DOM string Function index String literals

Location
of data Heap Stack “Constant” data

Malicious
behavior

Cross-site scripting
in JavaScript via
document.write()

Inject arbitrary
shell command
into exec()

Write arbitrary
content to chosen
�le using fprintf()

3.4 end-to-end attacks

We now demonstrate several end-to-end attacks, using di�erent attack
primitives from Section 3.3 and targeting di�erent host environments.
These attacks substantiate our claim that the current lack of mitiga-
tions in the WebAssembly ecosystem are problematic and enable real-
istic attacks. We make the attacks publicly available, providing a bench-
mark to guide and evaluate future work on hardening WebAssembly.

Table 3.2 gives an overview of the end-to-end attacks. They cover
di�erent host environments that support WebAssembly: the browser,
where we demonstrate a cross-site scripting attack; Node.js, where we
show a remote code execution attack; and stand-alone WebAssembly
VMs, such as Wasmtime [Wasmtime Website], where we show an ar-
bitrary �le write attack.

3.4.1 Cross-Site Scripting in Browsers

This attack shows that including vulnerable code compiled to WebAs-
sembly into a client-side web application can enable attacks known
from JavaScript-based applications, such as cross-site scripting (XSS).



3.4 end-to-end attacks 47

1 void main() {
2 std::string img_tag = "<img src='data:image/png;base64,";
3 pnm2png("input.pnm", "output.png"); // CVE-2018-14550
4 img_tag += file_to_base64("output.png") + "'>";
5 emcc::global("document").call("write", img_tag);
6 }

(a) Excerpt of C++ code (to be compiled with Emscripten) that uses the vulner-
able C library.

(b) In the benign case: Select a PNM
image and . . .

(c) . . .convert it to PNG with a C li-
brary, fully on the client side.

(d) A malicious input can over�ow a bu�er on the stack, then corrupt a string
on the heap, which is later used in DOM manipulation.

Figure 3.5: Example of cross-site scripting caused by using the vulnera-
ble libpng library (CVE-2018-14550).

As an example, consider an image sharing service where users upload
and view images. The service provides a web application that converts
images between di�erent formats on the client side, using a version of
the libpng image codec library compiled to WebAssembly (Figure 3.5).
Given a �le to be converted to PNG, the application calls libpng and
then displays the image by calling a DOM manipulation function, such
as document.write, provided by the JavaScript host environment.

Version 1.6.35 of libpng su�ers from a known bu�er over�ow vul-
nerability [CVE-2018-14550], which can be exploited when converting
a PNM �le to a PNG �le. When the library is compiled to native code
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with modern compilers on standard settings, stack canaries prevent
this vulnerability from being exploited. In WebAssembly, the vulnera-
bility can be exploited unhindered by any mitigations.

To exploit the vulnerability for cross-site scripting, an attacker pro-
vides a malicious image to another user who then displays it using the
web application. Figure 3.5a shows a minimal version of such an appli-
cation. During normal execution, the application converts the image
(line 3), encodes it with Base64 in a data URL, copies it into an img

tag (line 4), and then adds the tag into the document (line 5). Since the
image is embedded into the DOM as a base64-encoded string, it nor-
mally cannot lead to XSS. However, exploiting the stack-based bu�er
over�ow in libpng allows the attacker to overwrite higher addresses, in-
cluding the heap, which holds the C++ string with the img tag (line 2).
The attacker can then replace the img tag with arbitrary other content,
e.g., a script tag that displays an alert, which will then get passed to
document.write.

Depending on how the input data is provided, the above scenario
can lead to both non-persistent and persistent XSS attacks. In the non-
persistent variant, the attacker tricks a user into processing a malicious
image with the web application, which then immediately triggers the
attack in the user’s browser. In the persistent variant, the attacker up-
loads the malicious input image to some storage and then shares it with
others, who will be attacked once they download and convert the input
in their browser with the vulnerable WebAssembly code.

3.4.2 Remote Code Execution in Node.js

In the next attack, we demonstrate that including vulnerable WebAs-
sembly in a Node.js application can enable remote code execution.

As an example, consider a server that accepts requests to log the IDs
of customers that have been happy or unhappy about some product.
Listing 3.1a shows an excerpt of the code running in the server applica-
tion. The handle_request function receives three attacker-controlled
arguments: input1, which describes whether the customer was happy;
input2, which is supposed to be the length of the string in input1; and
input3, which contains the ID of the customer. Depending on the cus-
tomer’s happiness, the code calls log_happy or log_unhappy, which is
selected by assigning the respective function to the function pointer
func.
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1 // Functions supposed to be triggered by requests
2 void log_happy(int customer_id) { /* ... */ }
3 void log_unhappy(int customer_id) { /* ... */ }
4

5 void handle_request(char *input1, int input2, char *input3) {
6 void (*func)(int) = NULL;
7 char *happiness = malloc(16);
8 char *other_allocation = malloc(16);
9 memcpy(happiness, input1, input2); // Heap overflow

10 if (happiness[0] == 'h') func = &log_happy;
11 else if (happiness[0] == 'u') func = &log_unhappy;
12 free(happiness); // Unlink exploit overwrites func
13 func(atoi(input3)); // 3rd input is passed as argument
14 }
15

16 // Somewhere else in the binary:
17 void exec(const char *cmd) { /* ... */ }

(a) Sample application that calls one of two logging functions depending on its
input. It su�ers from a heap over�ow, which causes an arbitrary write on free,
allowing to redirect func to &exec. Then input3 can be chosen as the address
of an injected string.

1 (func $log_happy (param i32) (result) ...)
2 (func $log_unhappy (param i32) (result) ...)
3 (func $exec (param i32) (result) ...)

(b) Excerpt of the function section for the binary compiled from (a), showing that
exec, log_happy, and log_unhappy all have the same low-level WebAssembly
type signature [i32]→ [ ].

Listing 3.1: Example of a remote code execution exploit.

The code contains a heap over�ow vulnerability at line 9. In the ab-
sence of safe unlinking and other mitigations (we use the emmalloc

allocator for our proof of concept) an attacker can use the over�ow to
obtain an arbitrary write primitive through the classic heap metadata
corruption attack (see Section 3.3.1.3). If the function pointer func is
compiled into a variable in linear memory (which is the case, e.g., for
all function pointers in vtables), the attacker can use the write primi-
tive to manipulate it and redirect the call (Section 3.3.3.1). The absence
of ASLR simpli�es such an attack further, as the address to overwrite
is deterministic.

One possible target for redirecting the call is the exec function that
can also be found in the binary (line 17). While exec and the log_* func-
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1 // Append "constant" string into "constant" file.
2 FILE *f = fopen("file.txt", "a");
3 fprintf(f, "Append constant text.");
4 fclose(f);
5

6 // Somewhere else in the binary:
7 char buf[32];
8 scanf("%[^\n]", buf); // Stack-based buffer overflow!

(a) Excerpt of a C program with a stack-based bu�er over�ow that over�ows
into the ‘constant’ memory section, causing an arbitrary �le write.

1 (data (i32.const 65536) "%[^\0a]\00
2 file.txt\00
3 a\00
4 Append constant text.\00...")

;; Format string for scanf().
;; Filename.
;; Open mode for fopen().

;; Content.

(b) Excerpt of the data section for the binary compiled from (a), which shows
that the string literals for the �lename, the contents to be written, and even the
open mode are all located in regular (writable) linear memory.

Listing 3.2: Example of an arbitrary �le write exploit.

tions have di�erent C++ types, all three functions have identical types
on the WebAssembly level (Listing 3.1b). The reason is that both inte-
gers and pointers are represented as i32 types in WebAssembly, i.e.,
the redirected call passes WebAssembly’s type check. The �nal chal-
lenge is to pass an arbitrary command into exec, which is similar to
the injection of shellcode in native exploitation. One option is to inject
a suitable command string into the heap when overwriting the func-
tion index, and to then pass a decimal string with the address of the
command string as input3.

3.4.3 Arbitrary File Write in a Stand-Alone VM

As discussed in Section 2.3, WebAssembly is starting to establish itself
as a universal bytecode beyond web applications. There are multiple
virtual machines for running stand-alone WebAssembly applications,
including Wasmtime, Wasmer, and WAVM. The interface for such ap-
plications is WASI, and Clang can compile compatible binaries.

This attack demonstrates that, despite stand-alone WebAssembly VMs
being advertised as a secure platform for executing C/C++ code, Web-
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Assembly currently enables attacks impossible in modern native exe-
cution platforms. Listing 3.2a shows an excerpt of an apparently harm-
less application that appends a constant string to a statically known �le.
Somewhere else in the program, the code su�ers from a textbook bu�er
over�ow, which enables an attacker to overwrite data on the stack.
Compiled to a native target, exploiting the bu�er over�ow cannot in-
�uence the �le I/O, which is entirely based on string literals stored in
the read-only memory pages loaded from the .rodata section.

When running on a stand-alone WebAssembly VM, this vulnerabil-
ity can be exploited for an arbitrary �le write. The strings for �lename
and contents are stored in the unmanaged linear memory, as shown in
Listing 3.2b. They can be overwritten by a stack-based bu�er over�ow
of su�cient length if data lies above the stack (see Section 3.2.2). As
a result, the attacker can write arbitrary data into an arbitrary �le by
overwriting the �lename and contents strings. In our exploit, even the
�le open mode "a" (append) is changed to "w" by simply overwriting
the corresponding string in the data section.

3.5 quantitative evaluation

To better understand how realistic the attacks described so far are in
practice, we now present a quantitative evaluation on real-world Web-
Assembly binaries. We address the following research questions:

RQ1 How much data is stored on the unmanaged stack? This question
is relevant because the unmanaged stack serves both as an entry
point to obtain a write primitive, e.g., via a stack-based bu�er over-
�ow, and as a target for overwrites, e.g., to manipulate sensitive data.
(Section 3.5.2)

RQ2 How common are indirect calls and how many functions can be
reached from indirect calls? These questions are relevant to under-
stand the risk for control-�ow divergence by redirecting indirect
calls. (Section 3.5.3)

RQ3 How doesWebAssembly’s type checking of indirect call targets com-
pare to current control-�ow integrity (CFI) defenses for native binaries?
Since the runtime validation of indirect call targets performed by
the WebAssembly VM resembles CFI defenses, we compare both in
terms of CFI equivalence classes and class sizes. (Section 3.5.4)
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We make our full dataset and the tools we developed to obtain them
available at https://github.com/sola-st/wasm-binary-security.

3.5.1 Experimental Setup and Analysis Process

program corpus The binaries we analyze in our quantitative eval-
uation are split into two groups. First, we collect a set of nine binaries
from real-world, deployed WebAssembly applications: Adobe’s Docu-
ment Cloud View SDK12 renders and annotates PDFs in the browser;
Figma13 is a collaborate user-interface design web application; the 1Pass-
word X 1.17 browser extension14 contains a WebAssembly component
for password generation; Doom 3 as an example of a large game engine
ported to WebAssembly15; and �nally a set of codecs (webp, mozjpeg,
optipng, hqx) for in-browser image conversion.16 The binaries span dif-
ferent application domains (document editing, games, codecs), deploy-
ment scenarios (web application, browser extension), and source lan-
guages (C, C++, Rust), so we believe they are a good �rst approxima-
tion of realistic WebAssembly binaries. We collected their most recent
versions at the time of our evaluation in March 2020. Since our tool
is open source, we welcome others to replicate our results and extend
them by analyzing other WebAssembly binaries.

The second group of binaries in our corpus are 17 C and C++ pro-
grams from the SPEC CPU 2017 benchmark suite, compiled to WebAs-
sembly. The SPEC CPU suite has been used before to study the perfor-
mance of WebAssembly [Jangda et al. 2019]. It has also been used to
evaluate the security of CFI techniques for native code [Burow et al.
2017; X. Xu et al. 2019], enabling us to address RQ3. Those programs
are from compute-heavy domains (programming language implemen-
tations, simulations, video codecs, compression), matching the original
use cases for WebAssembly.17

Our combined program corpus consists of 26 WebAssembly binaries,
which contain 19.2 million instructions across 98,924 functions in total.
Table 3.3 gives a more detailed overview.

12 https://www.adobe.io/apis/documentcloud/dcsdk/viewsdk.html
13 https://www.figma.com/
14 https://1password.com/
15 http://www.continuation-labs.com/projects/d3wasm/
16 https://squoosh.app/
17 https://webassembly.org/docs/use-cases/

https://github.com/sola-st/wasm-binary-security
https://www.adobe.io/apis/documentcloud/dcsdk/viewsdk.html
https://www.figma.com/
https://1password.com/
http://www.continuation-labs.com/projects/d3wasm/
https://squoosh.app/
https://webassembly.org/docs/use-cases/


3.5 quantitative evaluation 53

toolchain and configuration We compiled the SPEC CPU
programs with Emscripten 1.39.7, i.e., the most recent version at the
time of the evaluation, with its upstream backend. Since this backend
is shared by all LLVM-based WebAssembly compilers (Clang, Rust),
our results should translate also to them. For completeness, we also
compiled all SPEC CPU programs with the now deprecated fastcomp
backend of Emscripten. Since fastcomp was the default backend of Em-
scripten until October 2019, its results are relevant for large amounts
of code previously compiled to WebAssembly. The results for fastcomp
and upstream are very similar, so for brevity we only present the up-
stream results in the following.

To obtain optimized binaries without symbols or debug information,
we compile with the -O3 option. GCC, x264, Blender, and Xalan-C++ re-
quired several preprocessor �ags for compatability, e.g., to set correct
integer bit-widths and platforms. Some programs also had to be manu-
ally linked because Emscripten’s libc (based on musl) causes errors due
to duplicate symbol de�nitions.

static analysis To address our research questions, we develop a
lightweight static analysis tool. To the best of our knowledge, it is the
�rst security analysis tool for WebAssembly binaries. The analysis is
written in about 600 lines of Rust and does the following.

• It extracts general information about the program, e.g., instruction
counts, the number of functions, and their types.

• It analyzes the unmanaged stack by inferring which global is the
stack pointer, which functions access it, and how the stack pointer
is incremented and decremented.

• It analyzes the table section and its static initialization, to �nd out
which functions are present in it. It also determines the function type
for each initialized table entry.

• Finally, it analyzes indirect call edges. For each call_indirect in-
struction, it collects the statically encoded type of allowed targets,
it determines all type-compatible functions that are present in the
table, and presents this information as CFI equivalence classes and
computes the class size.

We explain the analyses in more detail in the following.
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3.5.2 RQ1: Measuring Unmanaged Stack Usage

Measuring how much data a program stores on the unmanaged stack
(RQ1) is important for two reasons. First, such data could potentially
su�er from a stack-based over�ow. Second, such data may become sub-
ject to overwrites once an attacker has a write primitive. So, how much
data ends up on the unmanaged and unprotected stack?

static analysis Our static analysis measures the size of the stack
frame on the unmanaged stack for each non-imported function. The
analysis operates on optimized, stripped binaries without debug infor-
mation, as a realistic attacker would, and thus has to infer the unman-
aged stack usage directly from the bytecode.

First, the analysis needs to identify the stack pointer. Unlike in native
binaries, there is no convention to use a �xed register (such as rsp on
x86, which does not exist in WebAssembly) or global variable for the
stack pointer. Instead, the analysis extracts all instructions that modify
globals and selects the one that is most frequently read and written.
A manual analysis con�rms that this heuristic reliably �nds the stack
pointer. From the identi�ed global’s static initialization, we also know
the base address of the unmanaged stack in linear memory.

Second, for each function, the analysis infers the size of the stack
frame on the unmanaged stack. In all analyzed binaries, the previously
identi�ed stack pointer is modi�ed in a protocol similar to function
prologues and epilogues in native binaries. Speci�cally, our analysis
pattern matches against the following sequence of instructions and ex-
tracts the delta value, which gives us the stack frame size:

1 global.get $i
2 i32.const <delta>
3 i32.add or i32.sub
4 local.tee $j (optional)
5 global.set $i

This sequence �rst reads the current stack pointer from global $i (iden-
ti�ed earlier), then increments or decrements it (depending on whether
the stack grows upwards or downwards, see Section 3.2.2), optionally
saves it to a local (akin to a base pointer), and �nally writes the modi-
�ed value back to the global stack pointer.

results Figure 3.6 shows the distribution of stack frame sizes across
all analyzed binaries, both as a histogram (Figure 3.6a) and the cumula-
tive distribution (Figure 3.6b). One third (32,651) of all functions in the
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Figure 3.6: Distribution of frame sizes on the unmanaged stack for all
functions in the program corpus.

program corpus store some data on the unmanaged stack. The small-
est frame size of 16 (24) bytes is allocated by 13,620 functions (14% of
all functions). Stack frame sizes span the whole range from 16 bytes to
1 MiB, which is the largest static stack allocation. The distribution has a
long tail towards large stack frames. From the cumulative distribution
in Figure 3.6b, we see that 6% (6,127) of all functions allocate 128 (27)
bytes or more on the unmanaged stack, and 1.3% (1,232) of all functions
allocate at least 1 KiB.

Overall, we see that many functions use the unmanaged stack, which
is susceptible not only to arbitrary memory writes but also to inter-
frame bu�er over�ows (see Section 3.3). This implies that with increas-
ing call depth, the chance for an attacker to �nd at least some data
to overwrite increases quickly. For example, with ten nested calls (as-
suming a uniform distribution of functions), there would be some data
on the unmanaged stack with 1 − ((1 − 0.33)10) ≈ 98.2% probability.
We conclude that (1) a lot of stack data is prone to being overwritten
by bu�er over�ows and arbitrary write primitives, and (2) it is impor-
tant to isolate stack frames on the unmanaged stack, e.g., using stack
canaries.

3.5.3 RQ2: Measuring Indirect Calls and Targets

To better understand the risk for control-�ow attacks (RQ2), we analyze
indirect calls and their call targets in the binaries.
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Table 3.3: Overview of programs and static analysis results on indirect calls, the function table, and CFI equivalence classes.

Binary Source Instruct.
Indirect Calls Functions CFI Equivalence Classes
Count of All Count Indirectly Callable Idx. from Mem. Count Min Max Avg

Adobe View SDK C++ 1.1M 2803 6.2% 12566 3076 24.5% 3054 24.3% 87 1 848 32.2
1Password X exten. Rust 730.2k 283 1.4% 1941 596 30.7% 586 30.2% 19 1 91 14.9
Doom 3 C++ 1.7M 17903 31.3% 8239 4449 54.0% 4408 53.5% 642 1 3889 27.9
Figma C++ 3.2M 10469 8.1% 13619 3657 26.9% 3635 26.7% 68 1 4519 154.0
WebP encoder C 73.1k 87 3.6% 889 165 18.6% 69 7.8% 22 1 15 4.0
WebP decoder C 43.4k 69 5.4% 563 160 28.4% 107 19.0% 20 1 9 3.5
mozjpeg C 77.7k 298 22.0% 388 135 34.8% 116 29.9% 28 1 169 10.6
optipng C 119.2k 169 5.4% 735 152 20.7% 124 16.9% 28 1 34 6.0

C
ol
le
ct
ed
,r
ea
l-w

or
ld

pr
og
.

hqx Rust 111.4k 34 0.6% 73 17 23.3% 15 20.5% 4 1 16 8.5
500.perlbench C 837.8k 425 1.6% 2128 980 46.1% 956 44.9% 31 1 93 13.7
502.gcc C 2.9M 3642 2.5% 9541 3394 35.6% 3375 35.4% 78 1 982 46.7
505.mcf C 27.4k 44 8.8% 136 12 8.8% 8 5.9% 7 1 28 6.3
508.namd C++ 323.0k 41 1.1% 296 124 41.9% 107 36.1% 15 1 12 2.7
510.parest C++ 1.0M 1229 2.6% 3762 2864 76.1% 2714 72.1% 97 1 199 12.7
511.povray C++ 385.4k 228 1.9% 1421 521 36.7% 510 35.9% 29 1 57 7.9
519.lbm C 13.4k 12 6.2% 80 7 8.8% 6 7.5% 5 1 8 2.4
520.omnetpp C++ 619.3k 4536 10.6% 4615 3569 77.3% 3505 75.9% 79 1 1631 57.4
523.xalancbmk C++ 1.5M 13567 16.2% 8050 6225 77.3% 6072 75.4% 77 1 3893 176.2
525.ldecod C 233.0k 354 8.6% 551 129 23.4% 68 12.3% 24 1 135 14.8
525.x264 C 283.6k 773 14.2% 636 253 39.8% 177 27.8% 31 1 105 24.9
526.blender C++ 3.2M 17198 14.9% 25901 17387 67.1% 17263 66.6% 128 1 5360 134.4
531.deepsjeng C 53.0k 10 1.1% 174 10 5.7% 8 4.6% 5 1 6 2.0
538.imagick C 517.5k 1901 9.9% 1068 91 8.5% 74 6.9% 22 1 1592 86.4
541.leela C++ 118.8k 263 5.0% 1101 600 54.5% 520 47.2% 41 1 74 6.4
544.nab C 55.6k 17 1.7% 201 10 5.0% 8 4.0% 6 1 7 2.8
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557.xz C 53.3k 71 11.0% 250 98 39.2% 86 34.4% 19 1 11 3.7
Average per binary 738.1k 2939.5 3804.8 1872.3 1829.7 62.0 1 914.7 33.2
Total 19.2M 76426 9.8% 98924 48681 49.2% 47571 48.1%
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indirect calls First, we want to know how many indirect calls
are present in a binary, since each such call could be a source of an
unintended control-�ow edge. Our analysis disassembles all binaries
in Table 3.3 and counts the number of call_indirect instructions (col-
umn “Indirect calls: Count”). The percentage of indirect calls relative to
all calls varies considerably between programs (column “of All”), from
0.6% up to 31.3%. We also observe that the proportion of indirect calls
is independent of whether the source language is C or C++. Averaged
over all 26 programs, 9.8% of all call instructions are indirect, i.e., al-
most every tenth call can be potentially diverted to other functions.

indirectly callable functions To successfully redirect a
control-�ow edge, an attacker not only needs to �nd an indirect call
instruction as the source, but also a compatible function as the target.
Two conditions must hold for a function to be a valid indirect call target
(Section 2.2). First, the function’s type must be compatible with the type
statically encoded in the indirect call instruction. WebAssembly func-
tion types are very low-level, however. Many distinct source types are
lowered to the same WebAssembly type. E.g., the WebAssembly func-
tion type [i32]→ [] is compatible with all C functions that return void

and take any of the following C types as argument: a pointer (regard-
less of pointee type or const-ness), an array, a plain int, or anything
else that is represented as a 32-bit integer, e.g., enums.

Second, the function must be present in the table section of the bi-
nary, because the index passed to call_indirect is resolved to a func-
tion via this table. Our static analysis tool �nds which functions are
initialized in the table at program startup. Entries in the table cannot
be manipulated by the WebAssembly program itself. In principle, the
host environment, e.g., JavaScript in the browser, could add or remove
entries at runtime. We manually veri�ed that the JavaScript code gen-
erated by Emscripten does not modify the table, and thus assume our
analysis precisely measures the potential targets of indirect calls.

The columns “Indirectly Callable” in Table 3.3 show how many func-
tions are type-compatible with at least one call_indirect instruction
and present in the table section. The percentage of indirectly callable
functions ranges from 5% to 77.3%, with on average 49.2% of all func-
tions in the program corpus.
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function pointers in memory The above results give an up-
per bound of potential targets for control-�ow divergence. In practice,
if the table index passed to call_indirect comes from a local variable,
a global variable, or is the result of a sequence of instructions, then the
indices an attacker can choose from are likely more restricted. We also
measure how many table indices are read directly from memory. We
obtain this number through a static analysis of the instructions pre-
ceding indirect calls. Columns “Idx. from mem.” show the number of
type-compatible and in-table functions, for which at least one indirect
call exists that takes its table index directly from linear memory. For
each such function, given an arbitrary write primitive into linear mem-
ory, an indirect call could be diverted to reach the function. Perhaps
surprisingly, this number is very close to the upper bound: On average,
48.1% of all functions can be reached by a call_indirect that takes its
argument directly from linear memory, which is quite unprotected.

Overall, our analysis of indirect calls and targets shows a large po-
tential for e�ective control-�ow divergence. Many functions are indi-
rectly callable (49.2%, on average) and most of them could be reached
by simply overwriting an index stored in linear memory (48.1%). We
conclude that diverging indirect function calls poses a serious threat
to the integrity of control �ow in WebAssembly.

3.5.4 RQ3: Comparing with Existing CFI Policies

WebAssembly’s restrictions on control-�ow (Section 2.2) can be seen
as a way to enforce control-�ow integrity (CFI). In general, CFI has the
goal of mitigating runtime attacks by aborting execution when control-
�ow diverges from the permitted control-�ow de�ned by some policy
[Abadi et al. 2005]. For example, a coarse-grained policy can restrict
function calls to target only the beginning of functions, but not arbi-
trary code addresses [M. Zhang and Sekar 2013]. More elaborate poli-
cies ensure that virtual calls in a C++ program only call methods in the
class hierarchy of the static type of the receiver object, but not other
functions. In practice, there are several CFI approaches for native code
with di�erent performance-security trade-o�s [Burow et al. 2017; Niu
and Tan 2014, 2015; X. Xu et al. 2019] and implementations in open-
source (GCC and LLVM18) and commercial compilers (MSVC19).

18 [Tice et al. 2014] and https://clang.llvm.org/docs/ControlFlowIntegrity.html
19 https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
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Local control-�ow with br_table is already more restricted in Web-
Assembly than in native code, so we assume it is secure here. How-
ever, indirect calls can still target potentially many type-compatible
function in the table. Similar to coarse-grained CFI for native code, the
function types divide the possible targets of an indirect call into equiv-
alence classes, namely all functions with the same type. This is enforc-
ing control-�ow integrity (CFI) for forward edges.20 We thus compare
WebAssembly’s type checking of indirect calls with CFI defenses for
native binaries (RQ3).

equivalence classes Following prior work on CFI [Burow et al.
2017], we measure its e�ectiveness by analyzing the sets of control-
�ow targets an indirect transfer may be diverted to according to the
CFI mechanism. Each such a set is called a CFI equivalence class. To as-
sess the e�ectiveness of a CFI defense, we use two measures: The class
count, i.e., how many di�erent classes exist, and the sizes of the classes,
i.e., how many targets are in each class. A small class count means the
CFI defense distinguishes little between targets, giving attackers more
options for control-�ow divergence. A large class size is also insecure,
as it means a large number of control-�ow targets can all be reached
from a single source instruction.

For WebAssembly, we measure CFI equivalence classes by analyzing
the type signatures of indirectly callable functions, assigning all func-
tions with the same type signature into an equivalence class. Addition-
ally, we analyze the preceding instructions before an indirect call to
determine whether they restrict the table index, e.g., via bitmasking, to
a smaller range. The last block in Table 3.3 shows the results. On aver-
age, there are 62 equivalence classes per program, which each contain
33.2 functions. The largest equivalence class, in the Blender program,
contains over 5,300 functions. Overall, this shows that an attacker has
plenty of call targets to choose from.

comparing with native cfi defenses To put the results on
equivalence classes in perspective, we compare them with results re-
ported for native CFI defenses [Burow et al. 2017]. The tables in Ta-
ble 3.4a and Table 3.4b compare the counts and sizes of equivalence
classes, respectively. For example, MCFI [Niu and Tan 2014] and cCFI

20 Backward control-�ow edges, i.e., returns, are protected in WebAssembly by design be-
cause return addresses are managed by the VM. This o�ers security that is conceptually
similar to shadow stacks for native code.
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Table 3.4: Comparing WebAssembly type-checking of indirect calls with
native CFI solutions. The data of columns two to four is taken from
[Burow et al. 2017]; MCFI corresponds to [Niu and Tan 2014], cCFI to
[Niu and Tan 2015]. The programs are the ones in the intersection of
SPEC CPU 2006 (theirs) and SPEC CPU 2017 (ours).

(a) Number of equivalence classes (higher means more secure).

Program
Number of CFI Equivalence Classes

MCFI cCFI LLVM-CFI 3.9 WebAssembly

perlbench 38 30 36 31
mcf 12 8 N/A 7
omnetpp 357 321 35 79
xalancbmk 1534 1200 260 77
namd 166 150 4 15
povray 218 204 33 29

(b) Sizes of equivalence classes (lower means more secure).

Program
Size of Largest CFI Equivalence Class

MCFI cCFI LLVM-CFI 3.9 WebAssembly

perlbench 348 347 350 93
mcf 29 15 N/A 28
omnetpp 275 253 170 1631
xalancbmk 1141 608 95 3893
namd 187 113 30 12
povray 187 113 81 57
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[Niu and Tan 2015] partition the control-�ow targets of xalancbmk into
1534 and 1200 classes, respectively, whereas WebAssembly’s indirect
call target restrictions yield only 77 such classes. Regarding the size
of equivalence classes, WebAssembly has especially large classes for
omnetpp and xalancbmk, and similar classes sizes as the native defenses
for other programs.

Notably, omnetpp and xalancbmk are C++ programs that make heavy
use of object-oriented programming and virtual functions. Source-level
type information, e.g., about class hierarchies, can help compiler-based
CFI methods to identify more precise, and thus restrictive, equivalence
classes. In contrast, WebAssembly’s type checking has only (combina-
tions of) four low-level primitive types to work with, which might ex-
plain the stark di�erence to the native schemes.

Overall, WebAssembly’s type checking is often less e�ective than
modern CFI defenses available for native binaries. While type-checked
indirect calls certainly are a step forward compared to not having any
CFI defense, adapting more sophisticated CFI defenses could signi�-
cantly harden the currently produced binaries. For example, Clang’s
CFI scheme, which uses source-level information, can also be employed
by passing -fsanitize=cfi when compiling to WebAssembly.

3.6 discussion of mitigations

Before we conclude, we also want to discuss several mitigations that
could defeat the attacks presented so far, e.g., through amending the
language speci�cation, updates to compilers, or by application and li-
brary developers. Table 3.5 lists mitigations known for native binaries
but missing in WebAssembly, where they have to be implemented, and
what components of the ecosystem we currently �nd to be vulnerable.

3.6.1 WebAssembly Language

As we discussed in Section 2.2, there are several proposals for extend-
ing the WebAssembly language. While most of them are orthogonal to
security, some could address our attack primitives.

The multiple memories proposal [Rossberg 2019a] gives one mod-
ule the option of having multiple linear memories. Under the proposal,
memory operations statically encode which memory they operate on,
e.g., an i32.load $mem2 instruction can only load data from memory 2.
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Table 3.5: Mitigations that could be employed by di�erent parts of the
WebAssembly ecosystem.

Mitigation (Not) Implemented by A�ected

Page protections
and ASLR

Language speci�cation
and compilers All current binaries

Stricter CFI Language speci�cation
and compilers emcc 1.39.7, clang 9

FORTIFY_SOURCE

(for C code) Compilers emcc 1.39.7, clang 9

Stack canaries Compilers emcc 1.39.7, clang 9,
rustc 1.41

Safe unlinking Allocators emmalloc, wee_alloc

Multiple memories would enable separating stack, heap, and constant
data. Thus, an over�ow in one memory section would no longer a�ect
data in another memory. Also, pointers to the heap could no longer be
forged to point into the stack and vice versa. Finally, if compilers emit
only load instructions for a particular memory section, it becomes ef-
fectively read-only, since stores to other memories can never modify
it. This would prevent overwriting of constants. A challenge with this
proposal is that compiling to multiple memories is not straightforward.
Since memory accesses are statically restricted to a certain memory,
code that must handle pointers of di�erent regions must either be du-
plicated or objects explicitly copied between memories.

The reference types proposal [Rossberg 2019b] allows modules to
have multiple tables for indirect calls. Our call redirection primitive is
powerful only because all indirectly callable functions are currently in
the same table. Multiple tables allow for �ner-grained defenses. One
option is to de�ne multiple protection domains, e.g., one per statically-
linked library, and to keep a separate table per protection domain. An-
other option is to split call targets into equivalence classes, similar to
existing CFI techniques for native binaries, and to keep a separate table
per equivalence class.

Finally, the MS-Wasm proposal [Disselkoen et al. 2019] explicitly tar-
gets memory safety. It proposes to add so called segments to WebAs-
sembly, memory regions with de�ned size and lifetime. Handles into
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those segments are promoted to �rst class types, with own operations
for allocation and slicing. This requires quite some implementation ef-
fort by hosts, and unless hardware support for memory safety is pro-
vided, will likely incur a performance overhead.

A challenge with all changes to the core language is that they re-
quire updating existing virtual machines. Since WebAssembly is imple-
mented not just by one vendor, but in at least four browsers (Chrome,
Firefox, Safari, and Edge), Node.js, and several stand-alone VMs (Wasm-
time, WAVM), this risks a split of the still young ecosystem. However,
the reference types proposal was standardized in the meantime, and
the multiple memories proposal is (as of April 2022) in phase three of
the four phase standardization process.21

3.6.2 Compilers and Tooling

The perhaps most simple way of preventing many of our attack prim-
itives is to implement and activate security features that compilers,
linkers, and allocators already provide for native compilation targets.
Decades of research on binary security [Szekeres et al. 2013] have re-
sulted in several mitigations that could be applied to WebAssembly. Ex-
amples that would bene�t WebAssembly compilers are FORTIFY_SOURCE-
like code rewriting, stack canaries, CFI defenses, and safe unlinking in
memory allocators. In particular for stack canaries and rewriting com-
monly exploited C string functions, we believe there are no principled
hindrances to deployment. We hope they will be implemented by com-
pilers in the future, since they o�er good security bene�t for relatively
little change to the ecosystem, unlike, e.g., language changes.

A longer-term mitigation in compilers is to use the WebAssembly
language extensions discussed above, once they become available. For
example, when compiling C/C++ to WebAssembly, multiple memories
could mimic some of the security features provided by page protections
in native code.

3.6.3 Application and Library Developers

Developers of WebAssembly applications can reduce the risk by using
as little code in “unsafe” languages, such as C, as possible. To reduce
the attack surface, developers should also ensure to import only those

21 https://github.com/WebAssembly/proposals

https://github.com/WebAssembly/proposals


64 on the binary security of webassembly

APIs from the host environment that are strictly necessary. For exam-
ple, calling critical host functions, such as eval or exec is impossible
unless these functions are imported in the WebAssembly module. One
way to minimize the set of imported APIs in WebAssembly modules
for the browser, is to perform as little DOM manipulation as possible
from the WebAssembly module, and instead perform those tasks in the
JavaScript part of the application.

3.7 summary

This chapter presents the �rst in-depth security analysis of WebAssem-
bly binaries and compares the level of security against runtime attacks
provided by the WebAssembly language and ecosystem with that of na-
tive binaries. We �nd that vulnerable source programs result in binaries
that allow various kinds of attacks, including attacks that have not been
possible on native platforms since decades. Our �ndings are based on a
set of attack primitives that enable an attacker to gain a write primitive,
overwrite sensitive data, and trigger compromising behavior. Several
end-to-end examples of attacks, which cover WebAssembly running
in the browser, on Node.js, and in stand-alone VMs, demonstrate that
these primitives can be combined into e�ective exploits. Moreover, an
empirical evaluation of real-world binaries quanti�es the exploitation
risk, showing a large attack surface. Overall, our �ndings are a call to
arms for further hardening the WebAssembly language, its compilers,
and ecosystem, making the promise of a secure platform a reality.



4 WA S M B E N C H : A S T U DY O F
R E A L -WO R L D B I N A R I E S

Despite its popularity in di�erent domains, little is known about Web-
Assembly binaries that occur in the wild. Especially after the conclu-
sions of the previous chapter (Chapter 3), this leaves several open ques-
tions. What are WebAssembly binaries used for and how prevalent are
benign use cases? Given that WebAssembly binaries can be exploited,
how many binaries are potentially vulnerable?

This chapter reports on a comprehensive empirical study of 8,461
unique binaries gathered from a wide range of sources, including code
repositories, package managers, and live websites. We study the secu-
rity properties, source languages, and use cases of the binaries through
a combination of static analysis, manual inspection, and statistical ana-
lysis. We �nd that memory vulnerabilities potentially a�ect a wide
range of binaries (e.g., two thirds of the binaries are compiled from
memory-unsafe languages, such as C and C++) and that 21% of all bi-
naries import potentially dangerous APIs from their host environment.
We also show that cryptomining, which once accounted for the major-
ity of all WebAssembly code, has been marginalized (less than 1% of all
binaries found on the web) and gives way to a diverse set of use cases.
Finally, 29% of all binaries on the web are mini�ed, calling for tech-
niques to decompile and reverse engineer WebAssembly. Overall, our
results show that WebAssembly has left its infancy and is growing up
into a language that powers a diverse ecosystem, with new challenges
and opportunities for security researchers and practitioners. Besides
these insights, we also share the dataset underlying our study, which
is 58 times larger than the largest previously reported benchmark.

This chapter shares large parts of its material with the correspond-
ing publication [Hilbig et al. 2021]. The author of this dissertation has
proposed the initial research project and supervised Aaron Hilbig as a
bachelor student. The dissertation author then signi�cantly extended
the project, including collecting all non-Web binaries, re-implementing
analyses, evaluating, and writing the majority of the paper.

65
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4.1 motivation and contributions

Despite its growing popularity, the WebAssembly ecosystem is severely
understudied. To date, little is know about how the language is used,
for what purposes, and how this a�ects the security of WebAssembly-
based applications. In particular, we are interested in the following re-
search questions:

rq1: source languages and tools WebAssembly is a compi-
lation target, and in principle any programming language can be com-
piled to it. What languages are actually compiled to WebAssembly, how
much do they contribute to the overall population, and what tools are
used to produce the binaries? Answering these questions is relevant
for understanding the impact of issues that speci�c source languages
may have and for guiding future work toward source languages and
toolchains prevalent in practice.

rq2: attack surface In Chapter 3 we show that memory vul-
nerabilities in unsafe source languages, such as C and C++, can be ex-
ploited in WebAssembly binaries, sometimes even more easily than in
native code. How large is the attack surface o�ered by real-world Web-
Assembly binaries, e.g., in terms of dangerous APIs these binaries im-
port from JavaScript or in terms of vulnerable memory allocators they
ship? Answering this question will increase our understanding of the
threat posed by vulnerabilities compiled to the Web.

rq3: cryptomining Previous results show [Musch et al. 2019a],
and recent work assumes [Konoth et al. 2018; Musch et al. 2019b; Rüth
et al. 2018; W. Wang et al. 2018], that WebAssembly is frequently used
for cryptojacking, i.e., cryptomining performed in the browser of an
unsuspecting client. Is cryptomining still an important threat today?

rq4: use cases As a general purpose language, WebAssembly can
serve many purposes in web applications and beyond. What are the
typical use cases of WebAssembly? Given that the language is becom-
ing more widely adopted, it is important to understand what its use
cases are and how this a�ects the security of the Web.

rq5: minification and names The ability to understand Web-
Assembly binaries, e.g., for auditing third-party code or for reverse en-
gineering malware, depends on whether binaries contain meaningful
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names for program elements, e.g., functions. Do real-world WebAssem-
bly binaries contain meaningful names or are they obfuscated?
Answering these and other questions requires a set of WebAssembly
binaries that is (i) representative for how WebAssembly is used in the
wild and (ii) large enough to cover the diversity of real-world WebAs-
sembly usage. Currently, no such set of binaries exists.

The closest existing work is by Musch et al. [2019a], who report on
a study of WebAssembly usage in the top one million websites. While
inspiring, their study falls short in two respects. First, it has been per-
formed at a point in time when WebAssembly was still in its infancy,
with usage biased to early adopters, e.g., cryptominers, and a single
toolchain dominating the ecosystem. Since then, many changes have
happened, including higher browser adoption, alternative compilers
that have become available, the shutdown of Coinhive (a common cryp-
tomining platform) [Varlioglu et al. 2020], and the realization that vul-
nerabilities in insecure source languages can also be exploited in Web-
Assembly. Second, the methodology proposed by Musch et al. [2019a]
focuses only on binaries found on the Web, and only on those that
are executed when just visiting a website. By only looking into client-
side web applications, WebAssembly on other platforms is disregarded,
e.g., on Node.js, WebAssembly in browser extensions, and binaries for
stand-alone WebAssembly runtimes.

This chapter presents a comprehensive empirical study of real-world
WebAssembly binaries. The core of our work is WasmBench, a diverse
set of 8,461 unique binaries gathered from a variety of sources, includ-
ing querying source code repositories and package managers, search-
ing the HTTP Archive, and crawling the Web. The binaries found with
our methodology show that considering only a single one of these data
sources would miss a signi�cant fraction of the WebAssembly ecosys-
tem. While we obviously cannot guarantee to cover all real-world Web-
Assembly usages, WasmBench provides not only a 58 times larger
benchmark, but also a more diverse set of WebAssembly binaries, than
the largest previously reported benchmark [Musch et al. 2019a].

WithWasmBench, we address the above research questions through
a combination of manual inspection, custom static analysis tools, and
statistical analyses. Our �ndings include:
• Real-world WebAssembly binaries are compiled from a variety of

source languages, including systems programming languages, such
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as C, C++, Rust, and Go, higher level languages, such as Assem-
blyScript (a variant of TypeScript), and some rather unexpected lan-
guages, such as COBOL and Kotlin.

• The majority of WebAssembly binaries are compiled from memory-
unsafe languages, from which vulnerabilities may propagate.

• 65% of all binaries and 44% of all functions in them use the unman-
aged stack as described in Section 3.2, namely a portion of linear
memory that is unprotected by the virtual machine and that can be
exploited by attackers.

• 21% of all binaries import potentially dangerous APIs from their host
environment, e.g., the infamous eval, APIs to modify the DOM from
JavaScript, or system call-like APIs to interact with the network and
�le system on platforms outside the browser.

• Contrary to earlier �ndings [Musch et al. 2019a], cryptomining has
dropped signi�cantly in relevance, comprising only 1% of all binaries.
Instead, we �nd applications with up to many millions of instruc-
tions that cover diverse use cases, including visualization, interac-
tive shells for programming languages, media players, game engines,
data compression, and natural language processing.

• 28.8% of all binaries on the Web are mini�ed, calling for future work
on decompiling and reverse engineering WebAssembly, to ensure
that security analysts can understand web applications despite the
presence of low level components.

Overall, our �ndings show that WebAssembly is “growing up”, which
leads to a larger and much more diverse ecosystem than in its early
days. From a security perspective, this diversity has several implica-
tions. First, the fact that there are now many legitimate applications,
and proportionally much fewer malicious ones, shifts the focus from
detecting malicious code to handling vulnerable code. Second, the large
fraction of binaries that originate from “insecure” source languages, in
particular C and C++, shows the risk that their problems, e.g., mem-
ory vulnerabilities, will now propagate to the Web. Mitigations against
such memory vulnerabilities are becoming an important goal to keep
the Web safe. Third, the many di�erent compilation toolchains and
their variants, e.g., in terms of memory allocators compiled into the
binaries, create a potentially large attack surface. Automated tools to
analyze and improve the security of WebAssembly binaries are needed.
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Figure 4.1: Overview of the phases of our methodology.

contributions In summary, this chapter contributes:
• The �rst comprehensive study of WebAssembly binaries gathered

from multiple sources, including client-side web applications, pack-
age managers, and source code repositories;

• A combination of automated program analyses, manual inspection,
and statistical analysis to answer research questions about the secu-
rity, source languages, and use cases of WebAssembly;

• Empirical evidence and insights about security-related properties of
real-world WebAssembly, some of which update earlier �ndings and
many of which call for future work on mitigation techniques and
analysis tools;

• By far the largest benchmark of WebAssembly binaries, which we
make available as a basis for other studies and as a benchmark for
future tools: https://github.com/sola-st/WasmBench.

4.2 methodology

Our methodology is split into three phases (Figure 4.1). In the collection
phase, we obtain a large set of WebAssembly binaries from a variety of
sources. We select sources to cover WebAssembly in di�erent contexts
and at di�erent stages of deployment. Sections 4.2.1 to 4.2.4 present
how we collect WebAssembly binaries from source code repositories,
package managers that distribute deployed software, archived and live
websites, and through manual search, respectively. Figure 4.2 gives an
overview of the di�erent sources we collect binaries from. Alongside
each binary, we also collect metadata, e.g., on which website a binary
was found. All activities related to collecting binaries were done be-

https://github.com/sola-st/WasmBench
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Figure 4.2: Sources from which we collect binaries.

tween April and September 2020. Overall, the collection phase results
in 51,148 binaries, including duplicates and binaries that are not repre-
sentative for real-world usages of WebAssembly. Section 4.2.5 presents
the �ltering phase, where we �lter and deduplicate these binaries into a
set of 8,461 unique binaries that serve as the basis for our study. Finally,
the third phase analyzes the set of binaries through a combination of
static code analysis, analysis of metadata associated with the binaries,
and manual inspection. We present the analysis phase along with its
results in Section 4.3.

To the best of our knowledge, no prior work has gathered WebAs-
sembly binaries from such a diverse set of sources. As a result, the num-
ber of binaries we obtain is 58 times larger than the largest set studied
so far (147 unique binaries) [Musch et al. 2019a]. Our experimental re-
sults (Section 4.3.2) show that the sources we consider WebAssembly
binaries from complement each other, i.e., considering all of them is
crucial to obtain a representative dataset.

4.2.1 Collecting Binaries from Repositories

Our �rst method for collecting binaries looks into source code reposi-
tories. Even though WebAssembly is a binary format, developers often
store binaries into source code repositories, e.g., to ease the installation
of a project or to include third-party libraries. To gather such binaries,
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we clone all public repositories that are in the top 1,000 results of four
queries to the GitHub search API:
• Repositories where “wasm” or “WebAssembly” is in the repository

name or description (i.e., two queries).
• Repositories that are tagged with “WebAssembly” as one of the used

programming languages.
• Repositories tagged with the topic “WebAssembly”.
Overall, the queries result in 3,148 repositories, which we clone, and
then search for �les ending in .wasm.

4.2.2 Collecting Binaries from Package Managers

Once developers deploy a WebAssembly-based application, it is often
made available through a package manager. We consider three soft-
ware ecosystems that use WebAssembly.

npm packages The Node Package Manager (npm)1 distributes Java-
Script packages, some of which internally use WebAssembly code. Pack-
ages distributed via npm are typically used on the client side or in
server-side applications with Node.js. To �nd npm packages that con-
tain WebAssembly binaries, we gather two sets of packages. First, from
the full registry �le of npm we compute the top 1,000 most depended-
upon packages. Second, we query npm for all packages that match at
least one of the keywords “wasm” and “WebAssembly”, which yields
2,350 packages. We install these packages and their transitive depen-
dencies, and then search the resulting 7,198 packages for .wasm �les.

wapm packages The WebAssembly Package Manager (wapm)2

specializes on distributing WebAssembly code. Most of the wapm pack-
ages are intended to run on stand-alone WebAssembly runtimes. Un-
like for npm, we can a�ord to analyze all 103 available packages. We
install all packages and again extract all .wasm �les.

firefox browser add-ons Browser extensions, traditionally im-
plemented in JavaScript, nowadays can also make use of WebAssem-
bly code. To gather binaries used in browser extensions, we download
the top 2,500 Firefox add-ons from https://addons.mozilla.org, as

1 https://www.npmjs.com/
2 https://wapm.io/

https://addons.mozilla.org
https://www.npmjs.com/
https://wapm.io/
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measured by average daily users. We then unpack the extensions’ XPI
archives, and search again for .wasm �les.

4.2.3 Collecting Binaries from Websites

Collecting WebAssembly binaries from the Web involves several chal-
lenges. First, as the Web is too big to be crawled in its entirety, �nding
suitable starting points for exploring it is crucial. Second, even when
visiting a WebAssembly-powered website, it is non-trivial to identify
and collect WebAssembly binaries from it. Some sites embed WebAs-
sembly modules into JavaScript source code, e.g., as Base64-encoded
strings that are decoded and instantiated at runtime. For such sites,
we must detect WebAssembly modules when they are executed. Other
websites spawn requests for WebAssembly modules but never execute
them during our collection process, e.g., because execution relies on
speci�c user inputs. A purely dynamic methodology would miss such
binaries that are loaded but not executed initially.

We address the �rst challenge, �nding good websites as starting
points, through two techniques. On the one hand, we can build on re-
sults from the HTTP Archive for �nding sites known to contain WebAs-
sembly binaries (Section 4.2.3.1). On the other hand, for our own crawl-
ing, we systematically start from potentially WebAssembly-related seed
URLs (Section 4.2.3.2). To address the second challenge of detecting
WebAssembly binaries during crawling, we analyze all websites with
a combination of static and dynamic detection techniques.

4.2.3.1 Direct Downloads Guided by HTTP Archive

The HTTP Archive project3 regularly crawls the Web and makes the re-
quests and responses available. Starting from URLs obtained from the
Chrome User Experience Report , the project currently covers over 5
million top-level domains, monthly. We here focus on websites crawled
using the desktop version of Google Chrome, which we access via
Google’s BigQuery4 database system.

We search in the HTTP Archive tables for responses that are likely
WebAssembly binaries and then directly download the corresponding
�les. To this end, we query two tables, from months May and June

3 https://httparchive.org/
4 https://cloud.google.com/bigquery/

https://httparchive.org/
https://cloud.google.com/bigquery/
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2020, which contain information about all requests made while crawl-
ing the websites, and the corresponding responses. These tables, called
summary_requests are 434.4 GB and 476.7 GB in size. We then �lter all
requests in the tables as follows. We keep only those MIME types that
are commonly used to serve WebAssembly, such as application/wasm
and application/octet-stream, and all requests where .wasm appears
in the URL. These queries result in a set of 855 URLs. We download �les
from each of these URLs using wget and keep all that start with \0asm,
WebAssembly’s magic number.

4.2.3.2 Web Crawling

The HTTP Archive-guided search covers a wide range of top-level do-
mains, but it may miss WebAssembly binaries on websites not covered
by crawling a generic list of websites and binaries that one cannot iden-
tify based on their MIME type. To collect additional binaries, we also
perform our own web crawling. There are three components to our
crawling: the seed list, the crawling algorithm, and methods for detect-
ing WebAssembly.

seed lists Any kind of web crawling requires a seed list of URLs
to start from. We consider three seed lists, one generic list of popular
websites and two lists targeted speci�cally at WebAssembly:

• Top one million websites. As a generic set of websites to explore, we
start crawling from the one million most popular websites on the
Tranco list [Pochat et al. 2019], a top list more resilient to manipula-
tion than the commonly used Alexa list.

• “WebAssembly” in JavaScript �les. WebAssembly binaries on web-
sites must be executed by some surrounding JavaScript code, e.g.,
by calling WebAssembly.instantiate. To identify websites with such
JavaScript code, we query a table provided by the HTTP Archive
that stores the full bodies of all HTTP responses up to some size.
We search this table, which has a total size of 9.32 TB, with Google
BigQuery for all JavaScript responses that contain WebAssembly and
add the URLs of the corresponding websites to our seed list, which
results in about 40,000 URLs.

• WebAssembly top lists. As the most targeted seed list, we start crawl-
ing from three hand-curated lists of WebAssembly-related websites.
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These websites cover projects using WebAssembly5, tools and de-
mos6, and WebAssembly-based games7.

crawling algorithm Given a seed list, our crawler visits each
URL on the list and recursively follows links on the visited websites.
The crawler visits each URL, with up to one retry. If the website is
loading successfully, the crawler waits until either the “DOM content
loaded” event is �red and all network connections have become idle, or
until a 30-second timeout occurs. The crawler collects all WebAssem-
bly binaries loaded or executed in this time (details below). For each
visited website, the crawler extracts more URLs to explore from the
href attribute of all <a>-tags on the site.

To control the amount of sites to visit, the crawler is con�gured with
two parameters: the recursion depth 3 , which bounds how many links
away from the seed URLs to explore, and the exploration breadth 1,
which bounds how many links to follow on each explored site. If a
site has more than 1 links, the crawler picks 1 of them at random. For
the �rst two seed lists, we set 3 = 1 = 2, i.e., the crawler visits at
most seven sites per URL in the seed list. Because the third seed list is
the most focused one, we explore it more thoroughly with 3 = 7 and
1 = 3, and repeat the exploration with 16 separate crawler instances.
We chose those parameters based on preliminary experiments, to �nd
most binaries in a given time budget. We also set a proper user agent
to improve chances of not being detected as a bot.

identifying webassembly binaries For each website visited
by the crawler, we use a combination of two techniques to identify
WebAssembly binaries on the site. Our �rst detection mechanism in-
tercepts the network tra�c between the crawler and the website using
a local proxy8 that inspects the headers and contents of all requests and
responses. To identify WebAssembly modules, we check if the content-
type header matches application/wasm or application/octet-stream,
or if the URL contains .wasm, and then ensure that the response pay-
load starts with the proper magic number. If this is the case, we store
the loaded �le as a WebAssembly binary. The key advantage of this
detection mechanism is that it detects WebAssembly modules even if

5 https://madewithwebassembly.com/
6 https://github.com/mbasso/awesome-wasm
7 https://www.webassemblygames.com/
8 https://mitmproxy.org/

https://madewithwebassembly.com/
https://github.com/mbasso/awesome-wasm
https://www.webassemblygames.com/
https://mitmproxy.org/
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they are not executed during the crawler’s visit of the website. The
second detection mechanism tracks calls to APIs used for instantiat-
ing WebAssembly modules, as proposed in prior work [Musch et al.
2019a]. We transparently overwrite built-in JavaScript functions, such
as WebAssembly.instantiate, and analyze its invocations. In contrast
to the �rst detection mechanism, this mechanism can detect WebAs-
sembly binaries that occur inline in JavaScript code, if executed.

4.2.4 Collecting Binaries Manually

In addition to automatically collecting WebAssembly binaries, we also
gather a small number of binaries manually. On the one hand, we col-
lect binaries through manual interaction with the Web in daily brows-
ing between April and September 2020. On the other hand, we asked
WebAssembly developers on https://reddit.com/r/WebAssembly in
June 2020 for binaries they are willing to share. As discussed in the
results, these two manual collection methods complement our auto-
matically collected binaries with otherwise missed examples.

4.2.5 Deduplication and Filtering

After collecting binaries and associated metadata from the aforemen-
tioned sources, we remove duplicates and �lter binaries that are not
representative of real-world applications. To deduplicate binaries, we
compare �les based on their SHA256 hash and remove identical �les.
Unless mentioned otherwise, our study focuses in the deduplicated
dataset. In addition to deduplication, we remove binaries that are non-
representative of real-world applications, because they fall into at least
one of the following categories. Binaries that occur multiple times, e.g.,
across di�erent sources, are only removed if all occurrences of it were
�ltered out.
• Automatically generated binary variants: Some GitHub repositories

contain binaries generated by research tools, e.g., to fuzz-test Web-
Assembly implementations, to superoptimize WebAssembly binaries
[Arteaga, Donde, et al. 2020], or to perform automatic code diver-
si�cation [Arteaga, Malivitsis, et al. 2021]. Since these tools turn a
single binary into many, only slightly di�erent variants, we remove
the generated variants. We identify those variants by �lename (e.g.,
*.opt.wasm) and path (e.g., binaries in afl_out/).

https://reddit.com/r/WebAssembly
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• Test suites: On GitHub and in some npm packages, we �nd bina-
ries that are used as test inputs for WebAssembly-related tools, e.g.,
parsers, compilers, and virtual machines. One large portion are bina-
ries from the o�cial speci�cation test suite, which often test only a
single instruction or language construct. We identify them by typical
repositories and paths (e.g., �les in spectest/).

• Tutorial projects: Many npm projects and some GitHub repositories
are instances of users following WebAssembly tutorials for partic-
ular tool chains.9 Those binaries are small and all very similar. We
identify them based on common binary (e.g., hello_world_bg.wasm)
and project names (e.g., test-wasm@0.0.1).

• Small and invalid binaries: Finally, we remove binaries that contain
ten or fewer instructions, and binaries that cannot be validated by
the reference WebAssembly Binary Toolkit (wabt), even with all
language extensions enabled.

4.3 results

Based on the collected WasmBench dataset of real-world WebAssem-
bly binaries, we address the research questions (RQs) described in the
introduction. For each research question, we detail the analyses per-
formed on the dataset, the direct results, and then interpret those to
obtain insights, i.e., take-away points, often with a focus on security.
Before that, Sections 4.3.1 and 4.3.2 also explain our experimental setup
and give an overview of the dataset.

4.3.1 Implementation and Experimental Setup

The crawler is implemented based on Puppeteer and Puppeteer Clus-
ter, two Node.js libraries for controlling instances of the Chromium
browser, here version 83.0.4103.0. The static analyses described in the
following are implemented in several Rust programs to statically ex-
tract relevant features, such as instructions, names, etc. from the bi-
naries, complemented by Python scripts that perform the �nal analy-
ses. For parsing binaries, we use the wasmparser library, a project by
the Bytecode Alliance. All experiments were run on an Ubuntu 18.04
machine with two Intel Xeon CPUs at 2.2 GHz running 48 threads,

9 For example, the rustwasm book: https://rustwasm.github.io/docs/book/.

https://rustwasm.github.io/docs/book/
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Table 4.1: Contribution of di�erent sources to the dataset.

Source (see Figure 4.2)
Found Binaries

Total Unique Filtered Only

GitHub, search: wasm 44,218 21,117 6,830 6,641
NPM, top dependend-upon 14 8 8 3
NPM, search: wasm 3,488 2,452 1,163 1,036
WAPM, all 122 113 108 81
Firefox add-ons, top by users 29 17 17 15
Web, HTTP Archive 261 141 141 54
Web, crawling, with seed list: 2,923 432 412 298

HTTP Archive 2,046 268 254 128
Tranco top websites 769 167 164 86
WebAssembly top lists 108 89 76 43

Manual 93 89 88 57

All Sources 51,148 23,413 8,461

equipped with 256 GB of memory. The crawling was run in chunks
of 50,000 websites, where each chunk took about 7 hours to �nish,
with a total of about 10 days for all crawling. The static analyses usu-
ally �nish within several minutes for the entire dataset. Our entire
dataset and the implementation are available for others to build on at
https://github.com/sola-st/WasmBench.

4.3.2 Overview of Dataset

Table 4.1 gives an overview of our dataset. For each source, the table
shows how many binaries we found, and how many remain after dedu-
plication and �ltering. The last column shows how many binaries are
found only via a single source, illustrating the importance of particular
collection methods for obtaining a diverse dataset.

sources The largest contribution to the dataset are the GitHub repos-
itories and packages from npm. Given that WebAssembly binaries on
websites or in arbitrary packages are still relatively scarce, selecting
repositories and packages related to WebAssembly is an e�ective way
of �nding binaries. At the same time, the sources where we do not

https://github.com/sola-st/WasmBench
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Table 4.2: Binaries �ltered out due to di�erent criteria.

Filter
Removed Binaries

Total Unique

Generated binary variants, of those: 9,279 8,048
in CROW [Arteaga, Malivitsis, et al. 2021] repository 8,025 7,987

Test suites and �les, of those: 26,138 5,283
variants of WebAssembly spec suite 25,133 4,931

Invalid WebAssembly binaries 13,593 3,513
Small binaries: <10 instructions 10,146 1,881
Tutorial projects, of those: 848 633

hello-wasm projects 695 506

All Filters 37,808 14,952

query for WebAssembly speci�cally (i.e., most of the web crawling,
the top packages from npm, and Firefox add-ons) still show that Web-
Assembly binaries are found in the wild in popular projects used by
millions of users.

For the Web, we also see that all our four sources are essential for
�nding a diverse set of WebAssembly binaries. Only crawling the top
one million websites would miss at least 225 unique binaries. The fact
that the seed lists from HTTP Archive and the WebAssembly top lists
are much smaller than the list of the top one million websites, yet the
number of found binaries are similar or even higher, shows that a tar-
geted seed list for crawling is key to �nding otherwise missed binaries.

Insight 1. All methods we use to collect binaries contribute in a non-
negligible way. Combining di�erent sources and collection techniques
is crucial for obtaining a diverse dataset of WebAssembly binaries.

filtering Deduplication and �ltering non-representative binaries
(Section 4.2.5) signi�cantly reduces the dataset (Table 4.2). In particu-
lar, one repository that contains generated variants of input binaries
is important to �lter, as it otherwise accounts for almost 8,000 unique
binaries. From the second category, test suites, we also see that test bi-
naries are commonly reused across many projects (26,138 occurrences,
but only 5,283 unique binaries), and that most of them are from the o�-
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Figure 4.3: Distribution of binary sizes.

cial speci�cation test suite. The last �lter removes binaries from a few,
very similar tutorials, including more than 500 binaries from projects
called hello-wasm.

binary sizes As a �rst proxy for the diversity of the collected bina-
ries, we look into their sizes and instruction count. Figure 4.3 shows the
histogram and cumulative distribution of binary sizes in bytes. The dis-
tribution of the number of instructions is similar in shape and omitted
for brevity. While there are many small binaries, there is a long and
heavy tail towards larger sizes. Two thirds of the binaries are larger
than 20 KB and have more than 8,700 instructions. The median binary
is 37.1 KB large and has 14,885 instructions. The largest binaries are
a WebAssembly port of TiDB10, a distributed SQL database written
in Go, with 75.1 MB and 16.9M instructions, respectively, found as a
wapm package; opencascade.js11 (65.8 MB, 22.2M instructions), a Web-
Assembly port of an open source C++ CAD library, found on npm and
GitHub; and �nally the Clang compiler, itself compiled to WebAssem-
bly (46.7 MB, 12.6M instructions), found on wapm and GitHub.

Insight 2. Complex, real-world applications are compiled to Web-
Assembly. Two thirds of all binaries contain more than 10,000 instruc-
tions, and some binaries are from large, well-known projects, compiled
from millions of lines of code.

10 https://github.com/pingcap/tidb
11 https://github.com/donalffons/opencascade.js

https://github.com/pingcap/tidb
https://github.com/donalffons/opencascade.js


80 wasmbench: a study of real-world binaries

4.3.3 RQ1: Source Languages and Tools

Given WebAssembly’s goal of being a universal bytecode, we study
which languages are compiled to it in practice, and which toolchains
are used in the process.

analysis It is non-trivial to infer from a binary which source lan-
guage and compiler has produced it. We rely on several complementary
methods. First, we check the optional producers section, where some
toolchains explicitly encode the source language(s) a program is com-
piled from.12 Second, our analysis searches for characteristic function
names that appear in the import section, the export section, or the op-
tional name section. For example, _ZdaPv is the name-mangled delete

operator of C++; or runtime.gostring is a Go runtime library function.
Overall, we identify characteristic function names for C++, C, Rust, Go,
AssemblyScript, Kotlin, and FStar. Third, the analysis searches for char-
acteristic strings among all sequences of more than three ASCII charac-
ters in the data section. For example, being core types, Result::unwrap
and Option::unwrap frequently appear in error messages of the Rust
standard library. We identify characteristic strings for C++, Rust, Mat-
lab, and COBOL. Fourth, if none of the above work, we analyze sibling
�les of binaries collected from code repositories and package managers.
Sibling �le here means a �le in the same directory that shares the �le
name except for the extension. We take into account extensions for
C, C++, Rust, Go, AssemblyScript/TypeScript, the WebAssembly text
format (.wat/.wast), and several smaller languages. Finally, for some
source code repositories and packages with multiple unidenti�ed bina-
ries, we manually inspect source code, build scripts, and binaries. For
each of the automated methods above, we manually inspect binaries
and the predictions to con�rm that our heuristics are precise. For bina-
ries where multiple methods identify the source language, we con�rm
that the predictions are consistent.

results Figure 4.4a shows the inferred source languages. We see
that almost two thirds (64.2%) of the binaries are compiled from C,
C++, or a combination of both. Given that these are memory-unsafe
languages, plagued with decades of vulnerabilities [Szekeres et al. 2013]
and that WebAssembly binaries are not automatically safe from ex-
ploitation (Chapter 3), this result is highly worrying.

12 https://github.com/WebAssembly/tool-conventions/blob/main/ProducersSection.md

https://github.com/WebAssembly/tool-conventions/blob/main/ProducersSection.md
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Figure 4.4: Source languages and methods for inferring them.

Insight 3. Almost two-thirds of all collected binaries are compiled
from memory-unsafe source languages. These results and those in the
next section call for techniques to analyze and ensure WebAssembly’s
binary security.

Rust comes in second place with 14.9% of all binaries, followed by As-
semblyScript (3%) and Go (1.7%) as source languages with o�cial Web-
Assembly support. Finally, there is a longer tail of other languages, of-
ten used in single projects: Matlab13 (0.69%), FStar14 (0.33%), CHIP-815

(0.26%), several binaries compiled from toy languages, and even a sin-
gle instance of COBOL. A small portion of binaries (1.1%) is translated
directly from the WebAssembly text format, i.e., likely to be written by
hand. Finally, for 3.3% of all binaries we could not assign a source lan-
guage, but since they contain less than 100 instructions, they are also
likely to be written manually.

Insight 4. In addition to C and C++, various other languages are
compiled to WebAssembly, including languages with garbage collec-
tion and heavier runtimes (Go, Matlab). This result matches WebAs-
sembly’s goal of serving as a universal bytecode. It also means binary
analysis will become more important, since source code is not always
available, and even if it is, implementing separate analyses for many
languages is impractical.

13 https://github.com/Sable/matwably
14 https://github.com/FStarLang/kremlin
15 An 8-bit VM language from 1970s, https://github.com/pepyakin/emchipten

https://github.com/Sable/matwably
https://github.com/FStarLang/kremlin
https://github.com/pepyakin/emchipten
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We also analyze the tools used to produce the binaries. For 20.2%
of the binaries, the producers section explicitly mentions them in the
processed-by �eld. 10.8% of all binaries explicitly mention being pro-
duced by Clang. No binaries mention Emscripten because it does not
emit a producer section, unlike newer versions of Clang. These results
show that Emscripten is no longer the only way to compile C and C++
to WebAssembly. Other tools that appear in the producer section are
rustc (9.5%), wasm-bindgen16 (7.9%), a JavaScript host-code generator,
and walrus (7.5%)17, a binary transformation library, and the o�cial Go
compiler (0.4%). Since all compilers from Rust, C, and C++ to WebAs-
sembly are based on LLVM, we can also derive that 79.1% of the binaries
are produced with the help of LLVM.

Insight 5. Almost 80% of all binaries are compiled with the help of the
LLVM toolchain. This implies that security mitigations, such as stack
canaries, would have a large e�ect on the ecosystem if implemented in
this toolchain.

Figure 4.4b shows which of our methods are most e�ective at in-
ferring the source language. 20.2% of the binaries contain a producers
section, from which the source code language can be directly obtained.
Characteristic names and strings are also important inference meth-
ods, since they apply to 64.9% and 60.9% of binaries, respectively. Over-
all, our methods infer the source language for 91% (7,698) of the 8,461
unique binaries.

4.3.4 RQ2: Vulnerabilities Propagated from Source Languages

In Chapter 3 we have shown that memory vulnerabilities in unsafe
source languages can propagate to WebAssembly binaries, and may
sometimes be exploited even more easily than for native binaries. In
this previous work, we have evaluated the risks of such attacks on a
small set of 26 binaries, most of which are compiled C/C++ benchmarks.
It remains unclear to what extent propagated vulnerabilities may a�ect
larger sets of WebAssembly binaries.

We address this question by studying three important characteristics
of binaries that attackers can abuse: (i) uses of the unmanaged stack, i.e.,
the unprotected portion of linear memory set aside for function-scoped

16 https://github.com/rustwasm/wasm-bindgen
17 https://github.com/rustwasm/walrus

https://github.com/rustwasm/wasm-bindgen
https://github.com/rustwasm/walrus
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data (Section 4.3.4.1); (ii) unsafe memory allocators compiled into a
binary, which attackers can abuse as a memory write primitive (Sec-
tion 4.3.4.2); and (iii) accesses to potentially dangerous APIs imported
from the host environment (Section 4.3.4.3). For (i) we re�ne the static
analysis from Section 3.5 and consider a 325 times larger dataset. For
characteristics (ii) and (iii), this work is the �rst to systematically eval-
uate their prevalence in real-world WebAssembly binaries. We study
all binaries, irrespective of the source language, because the problem
of propagated vulnerabilities may a�ect all languages with memory-
unsafe behavior, in particular C, C++, but also, e.g., Rust, as its unsafe
keyword is commonly used [Evans et al. 2020] and can cause memory-
safety related vulnerabilities [H. Xu et al. 2021].

4.3.4.1 Usage of the Unmanaged Stack

The so-called unmanaged stack is a region within linear memory of a
WebAssembly program that holds, e.g., non-primitive data with func-
tion lifetime. This design is motivated by the fact that all non-scalar
data and all data of which an address is taken cannot be put in Web-
Assembly’s locals or globals, but must instead reside in linear mem-
ory (Section 3.2). Given that bu�er over�ows on the unmanaged stack
can overwrite across stack frames and even into supposedly “constant”
data, this makes the unmanaged stack a more dangerous exploitation
target than even in native programs. For this reason, we evaluate how
many binaries use it in practice.

analysis To analyze the usage of the unmanaged stack, our static
analysis performs two steps. First, it tries to identify the stack pointer
to determine whether a binary uses an unmanaged stack at all. Out of
all global variables, the analysis selects the one that
• has type i32, i.e., the type of all pointers,
• is declared mutable, to exclude constants like STACK_MAX,
• is the most read and written global, as determined by the number of
global.get × global.set instructions18, and

• has at least three reads and at least three writes, to avoid false posi-
tives in small binaries.

18 The product of the counts prefers globals which are similarly often read and written.
This is true for the stack pointer, but not for other frequently accessed pointers.
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Figure 4.5: Usage of the unmanaged stack in binaries.

We manually validate that these heuristics identify the stack pointer
reliably on randomly sampled binaries. If the analysis cannot iden-
tify a stack pointer, it conservatively assumes that the binary does not
use an unmanaged stack. Second, once the stack pointer is identi�ed,
the analysis counts the number of functions in the binary that access
the stack pointer somewhere in their body. Our implementation builds
upon the analysis described in Section 3.5.2, but uses a newer WebAs-
sembly parser to handle language extensions and make the analysis
robust enough to run on thousands of real-world binaries.

results Figure 4.5a shows that almost two thirds (65%) of all bina-
ries use the unmanaged stack. While most of them use the global with
index 0 as their stack pointer, our heuristics to identify the stack pointer
are important, since 15.2% of all binaries use another global variable. For
2% of the binaries, the analysis can clearly determine that they have no
unmanaged stack in linear memory, simply because there is no linear
memory at all. For 23.5% of the binaries, there is a linear memory sec-
tion, but no mutable i32 global that could be a stack pointer. Finally,
9.5% of all binaries have at least one candidate mutable global pointer,
but it is not accessed often enough for our analysis to consider it the
stack pointer. Interestingly, AssemblyScript programs are in the last
category, since its runtime seems to not support stack allocation.

To better understand how much a binary uses the unmanaged stack,
Figure 4.5b shows how many of the functions in a binary access the
stack pointer at least once. Consistent with Figure 4.5a, in 35% of all
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binaries no function uses the stack pointer because none is present. In
the median binary, already 33% of all functions use the stack pointer,
and in some binaries almost every function uses the unmanaged stack.
On average across all binaries with an unmanaged stack, 44% of their
functions make use of it.

Insight 6. Many binaries (65%) and functions in those binaries (44%)
use the unmanaged stack, which attackers may abuse for runtime ex-
ploitation. This result extends our �ndings from Section 3.5 to a much
larger and more diverse set of real-world binaries.

4.3.4.2 Statically Linked Allocators

WebAssembly’s memory organization is very low-level. Besides the sin-
gle linear memory section, which can be expanded at runtime with the
memory.grow instruction, no help with allocating memory is provided
by the language (Section 2.2). Subdividing the linear memory, e.g., to
avoid fragmentation and to reuse space of deallocated objects, needs to
be handled by an allocator that is statically linked into the binary. Es-
pecially for binaries on the Web and for smart contract platforms, code
size is an important consideration, so developers can choose a light-
weight allocator instead of the default allocator provided by the com-
piler. Our attacks in Chapter 3 have shown that those smaller allocators
can lack important mitigations against heap metadata corruption and
yield powerful arbitrary write primitives for an attacker. However, it
remains unclear what allocators developers use in practice.

analysis To identify allocators in a binary, we rely on similar heuris-
tics as for source language detection (Section 4.3.3). That is, we �rst
identify allocators by characteristic function names in binaries, if those
are available. Then, we inspect frequent strings in the data section of bi-
naries, e.g., for error messages of certain allocators. We have validated
our heuristic, e.g., by searching for the source code of allocators online
and comparing it with our �ndings.

results Figure 4.6 shows our results, grouped into three categories.
In blue, we mark default allocators provided by programming languages
and compilers, in di�erent shades of red we mark other allocators that
we identi�ed, and in gray when we could not identify an allocator. In
terms of default allocators, we see that 16.9% of all binaries use dlmalloc,
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dlmalloc (1,430) 16.9%

Go malloc (139)
1.6%

AssemblyScript alloc (114)

1.3% eosio malloc (2,766)

32.7%

eosio simple_malloc (368)

4.3%

wee_alloc (62)0.7%
Boehm GC (61)0.7%

emmalloc (11)
Others (9)

No memory (167)

2.0%

No loads/stores (155)

1.8%

Unknown (1,994)

23.6%Unknown, 
Emscripten (1,189)

14.0%

Figure 4.6: Identi�ed memory allocators in binaries (multiple can apply).

the default allocator provided by Emscripten, Clang, and the Rust com-
piler when targeting WebAssembly. Go and AssemblyScript allocators
are present roughly in the proportion of their respective languages.

Among the non-default allocators, two dominate, which are present
in 32.7% and 4.3% of our binaries. They are both from EOSIO, a smart
contract platform that uses WebAssembly as its bytecode.19 Those con-
tracts can be written in C++ and compiled with Emscripten. However,
most of them are not using Emscripten’s default allocator. While we
did not perform an in-depth security analysis of EOSIO malloc and
simple_malloc, both are considerably shorter in terms of lines of code
and do not feature any assertions that would guard against metadata
corruption. In our dataset, we also �nd wee_alloc (62 binaries) and
emmalloc (11 binaries), two small allocators for Rust and Emscripten re-
spectively, that we already found to be vulnerable against heap meta-
data corruption attacks (Section 3.3.1.3). Other interesting custom allo-
cators are Boehm GC (a mark-and-sweep garbage collector) and gperftools,
in several binaries collected from Google domains.

Insight 7. WebAssembly binaries come with a variety of memory
allocators, including many custom allocators (38.6%). This increases the
risk of including a vulnerable allocator. If code size is the motivation
to use custom allocators, a more secure alternative could be a memory
allocation or garbage collection API provided by the host environment
[Rossberg 2019b].

19 https://eos.io/

https://eos.io/
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4.3.4.3 Imports of Security-Critical APIs from Host Environment

To exploit a WebAssembly binary, an attack proceeds in two steps. The
�rst step is compromising the state or behavior of the WebAssembly
binary itself, e.g., by exploiting an unsafe allocator (Section 4.3.4.2) or
a bu�er over�ow on the unmanaged stack (Section 4.3.4.1). The second
step is actually performing the malicious action to the underlying sys-
tem. The only way to do so, assuming VM implementations are bug-
free and host security is perfect,20 is to call functions imported into
the WebAssembly binary from the host environment. For example, an
attacker could pass an injected string on the unmanaged stack to an
imported function, e.g., JavaScript’s eval. To estimate how often Web-
Assembly binaries use such security-critical host APIs, we thus analyze
their imports.

analysis We identify imported security-critical APIs based on their
import name in the WebAssembly binary. Going by name (instead of
implementation) is necessary because, (1) the implementation of an im-
ported function is supplied by the host only at instantiation-time, so it
is not available when given only the binary; and (2) there are many host
environments, not all of which are using JavaScript. WASI for example,
de�nes imports that can be implemented by di�erent stand-alone Web-
Assembly VMs in native code. We thus identify import names for which
the host implementation is likely a security-critical function. E.g., the
import emscripten_run_script in WebAssembly binaries is typically
bound to Emscripten-generated JavaScript code that calls eval. We
match imports against 18 patterns in �ve categories known to be po-
tentially security-critical APIs:

• Code execution. Imports like eval, exec, or emscripten_run_script.
• Network access. Imports containing XHR, request, http, or fetch.
• File I/O. Imports containing file, fd, or path.
• DOM interaction. Imports containing document, html, body, or element

could manipulate the DOM, which can lead to cross-site scripting.
• Dynamic linking. dlopen, dlsym, and dlclose allow loading addi-

tional code at runtime, which can lead to code injection.

20 Obviously, host security is not perfect, looking at past attacks against WebAssembly
VM implementations [Plaskett et al. 2018; Silvanovich 2018].
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Table 4.3: Imports matching potentially security-critical APIs.

Category Patterns
Matching

Imports Binaries %

Code execution eval, exec, execve,
emscripten_run_script

383 160 1.9%

Network access xhr, request, http, fetch 944 172 2.0%
File I/O file, fd, path 7,532 1,610 19.0%
DOM interaction document, html, body, element 1,720 212 2.5%
Dynamic linking dlopen, dlsym, dlclose 352 138 1.6%

At least one 10,468 1,797 21.2%

To avoid spurious matches, especially for short patterns like fd, we
tokenize import names based on camel-case and non-alphabet char-
acters, and then check for a pattern to occur verbatim in the token
sequence. E.g., fd_write matches our �le I/O category, but bufdelete
does not. We manually inspect matches to ensure they are plausible
and remove benign matches otherwise.

results Table 4.3 shows the results of our name-based import ana-
lysis. The �rst two columns show the category and patterns we match
import names against. In the third column, we count imported func-
tions that match at least one pattern. The last two columns show the
number of binaries with at least one matching import, and which frac-
tion of the �ltered dataset this corresponds to. We see that imports
related to �le I/O, the most common category, are present in almost
every �fth binary. Interestingly, even though WebAssembly was origi-
nally not meant to replace JavaScript, but rather for compute intensive
applications, still 212 binaries likely interact with the DOM from Web-
Assembly, which attackers could use for cross-site scripting. In the last
row, we see that overall 21.2% of all binaries import at least one poten-
tially security-critical API.

Insight 8. Many binaries (21.2%) import potentially dangerous APIs
from their host environment, which may allow compromised binaries,
e.g., to inject arbitrary code or to write to the �le system.



4.3 results 89

4.3.5 RQ3: Cryptomining

A study of real-world uses of WebAssembly performed in early 2019
[Musch et al. 2019a] reports cryptomining to be one of the most com-
mon use cases of WebAssembly on the Web. That study found 55.7%
of the analyzed websites to use WebAssembly for cryptojacking, i.e.,
the practice of using a website visitor’s hardware resources for min-
ing cryptocurrencies without their consent. Identifying and controlling
cryptominers on the Web has been the focus of several recent pieces of
work [Konoth et al. 2018; Musch et al. 2019b; Rüth et al. 2018; W. Wang
et al. 2018]. In this research question, we study whether cryptomining
is still an important threat today. We address this question in two ways.
First, we analyze those binaries we collected from the Web for signs of
being cryptominers. Second, we directly compare the binaries gathered
in earlier work with our dataset.

4.3.5.1 Analyzing Binaries Found on the Web

To understand the prevalence of cryptomining today, we analyze all bi-
naries collected from the Web, i.e., direct downloads guided by HTTP
Archive and the results of our own crawling, using VirusTotal. The
VirusTotal API allows to upload and scan �les with up to 70 indepen-
dent third-party antivirus scanners and malware detectors, and reports
back the number of positive results. Among the 352 analyzed bina-
ries, VirusTotal reports four �les to contain malicious content. Three
of them are likely to be the same program, as they have similar sizes
(68.8 ± 0.7 kB) and the same distribution of instructions. These three
�les are detected by 26 or more scanning tools employed by VirusTo-
tal. One of the �les is collected from http://monero.cit.net, which
further supports the presumption that the binary is a cryptominer, as
“Monero” is the name of a common cryptocurreny. Moreover, one of
three binaries is identical to a binary we collect also from a GitHub
repository called “CryptoNoter”21, which is an open-source Monero
cryptominer. The fourth �le reported by VirusTotal is tested positive
by only one scanner. Our manual analysis shows that the report for
this binary is likely to be a false positive.

21 https://github.com/JayWalker512/CryptoNoter

http://monero.cit.net
https://github.com/JayWalker512/CryptoNoter
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4.3.5.2 Comparison with Dataset by Musch et al. [2019a]

The previous study is based on 147 unique WebAssembly binaries, which
the authors kindly shared with us. The intersection of their dataset
with ours contains 23 binaries, i.e., 16% of their dataset and 0.2% of
our dataset. To better understand these binaries, we manually exam-
ine them and visit the corresponding websites. We �nd four of the 23
binaries to be suspicious. Two of them are among the �les �agged by
VirusTotal, as discussed above. For one �le from a website that declares
itself to be a “blockchain explorer”, we could not observe any suspi-
cious activity when visiting the source website, but also could not iden-
tify its functionality, and thus declare it to be suspicious. For the last
suspicious binary, visiting the corresponding website increases CPU
load to 70%. The website o�ers a service to mine cryptocurrency and
openly advertises the fact that one can start mining immediately in
the browser. That is, the binary is an example of cryptomining but not
illicit cryptojacking.

In summary, we identify only four binaries from the web portion of
our dataset as possible cryptominers (about 1% of the dataset), three of
which appeared to be inactive when visiting the website. While our ana-
lysis may miss cryptomining binaries, a risk one could reduce through
additional analysis techniques beyond those provided via VirusTotal
[Musch et al. 2019a; W. Wang et al. 2018], the prevalence of cryptomin-
ing seems to have dropped signi�cantly over the past one to two years.
This result is also con�rmed by a manual analysis of WebAssembly
binaries found on the Web (Section 4.3.6.2) and is in line with other re-
ports [Varlioglu et al. 2020] that cryptomining became less appealing
after one of the major cryptomining script providers, Coinhive, shut
down. Varlioglu et al. �nd a 99% decrease in sites using cryptomin-
ing among sites that had made use of it before. The low numbers of
cryptominers found by our analysis con�rms this trend and shows its
declining in�uence on the WebAssembly ecosystem.

Insight 9. We �nd WebAssembly-based cryptominers to have signif-
icantly dropped in importance compared to the results of an earlier
study [Musch et al. 2019a]. This �nding motivates security research to
shift the focus from malicious WebAssembly to vulnerabilities in Web-
Assembly binaries.



4.3 results 91

0 10 20 30 40
Unique binaries, orderd by number of occurrences

0

100

200

300

N
um

be
r 

of
 d

om
ai

ns Other
Test for WebAssembly support
Hyphenopoly
Long.js

Figure 4.7: Binaries found on multiple websites.

4.3.6 RQ4: Use Cases on the Web

Given the decreased prevalence of cryptominers, what other use cases
does WebAssembly have? The following focuses on the Web because
it is the most prominent target platform of WebAssembly and because
websites are complete applications that we can manually analyze with
reasonable e�ort. We address the question in two ways. First, we study
binaries that occur across multiple websites, to understand libraries
and other widely reused components (Section 4.3.6.1). Second, we in-
spect a random sample of 100 unique binaries, to understand the appli-
cation domains of WebAssembly (Section 4.3.6.2). To capture the full
picture of use cases, the results are on un�ltered binaries.

4.3.6.1 Binaries Found on Multiple Websites

Out of all 476 unique binaries found on the Web, 70 are reused across
at least two di�erent top-level domains. Figure 4.7 shows a histogram
of how often binaries occur on multiple domains. The data follows a
long-tail distribution, i.e., a few binaries occur on many websites, while
many other binaries recur a few times or only once. The top-most
widely distributed binary occurs 371 times, i.e., in 28% of all domains
where we detect WebAssembly binaries.

To better understand the most recurring binaries, we analyze them
through a combination of automated clustering and manual inspection.
The automated clustering represents each binary as a set of byte n-
grams [Manning et al. 2008], summarizes the number of n-gram oc-
currences in a binary into a characteristic vector, and then clusters bi-
naries based on the pairwise cosine similarity of their vectors. We then
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inspect the top-most binaries in Figure 4.7, using the clusters to quickly
identify variants of the same binary. Our analysis shows the following
to be the most widely occurring WebAssembly binaries.

testing for webassembly support At least 509 domains
(38.5% of all domains that use WebAssembly) are serving a WebAssem-
bly binary that tests whether the browser supports WebAssembly at
all. We found two variants of such binaries, both of which are rather
small: a six instruction binary with a single function called test and an
eight byte binary that only contains the WebAssembly magic number
followed by the language version. Websites serving these test binaries
often also serve larger binaries, i.e., they �rst test whether WebAssem-
bly is supported, and if it is, load a more complex binary. For example, at
least 397 domains that serve a test binary also serve the Hyphenopoly
library discussed next.

hyphenopoly At least 462 domains (34.9% of all domains that use
WebAssembly) serve binaries that are part of the Hyphenopoly.js Java-
Script library, which uses WebAssembly to implement its core function-
ality. Hyphenopoly is a poly�ll that “hyphenates text if the user agent
does not support CSS-hyphenation”.22 Our clustering identi�es 24 vari-
ants of this binary, which are all generated from the same underlying
library to support di�erent natural languages.

64-bit integer arithmetic in long.js At least 331 domains
(25% of all domains that use WebAssembly) serve a binary that is part
of long.js, a JavaScript library for 64-bit integer computations.23 The
library is commonly used in video players.

draco library for 3d data compression At least 25 domains
(1.8% of all domains that use WebAssembly) serve a binary that belongs
to theDraco library, which support compressing and decompressing 3D
data.24 These binaries commonly occur on websites with 3D demos or
integrated 3D assets.

Insight 10. The most widely occurring binaries on the Web are dy-
namic tests for WebAssembly support and JavaScript-WebAssembly li-
braries that perform computation-heavy tasks.

22 https://github.com/mnater/Hyphenopoly
23 https://github.com/dcodeIO/long.js
24 https://github.com/google/draco

https://github.com/mnater/Hyphenopoly
https://github.com/dcodeIO/long.js
https://github.com/google/draco
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Table 4.4: Application domains of 100 randomly sampled, unique Web-
Assembly binaries found on the Web.

Application Domain # Binaries

Games 25
Text processing 11
Visualization / Animation 11
Media processing / Player 9
Demo, e.g., of a programming
language 7

WebAssembly tutorial or test 5
Chat 3

Application Domain # Binaries

Online gambling 2
Barcodes and QR codes 2
Room planning / Furniture 2
Blogging 2
Cryptocurrency wallet 2
Regular expressions 1
Hashing 1
PDF viewer 1

4.3.6.2 Manual Inspection of a Random Sample

To better understand the long-tail of binaries found on a few or only
a single website, we also inspect a random sample of 100 unique bi-
naries found on the Web. We exclude binaries detected only via the
WebAssembly top lists (Section 4.2.3.2) to avoid biasing the results to-
ward pre-selected application domains. By inspecting the binaries, the
corresponding websites, and how the websites uses the binaries, we
identify the purpose of 84 out of the 100 binaries. Table 4.4 summarizes
the application domains that the binaries are used in. The most com-
mon domains are games, accounting for a quarter of all binaries. Text
processing and applications in visualization and animation are also rel-
atively common, with 11 of 100 binaries each. The remaining list shows
the diversity of application domains WebAssembly is used in, ranging
from online demos of programming languages, over support for creat-
ing and scanning barcodes, to document viewers.

Insight 11. The application domains of WebAssembly binaries on the
Web re�ect the diversity of the Web itself, showing that WebAssembly
is used in a wide range of applications.

4.3.7 RQ5: Mini�cation and Names

As a binary format with only a low-level textual representation, WebAs-
sembly binaries cannot be as easily inspected and understood as source
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code, e.g., in JavaScript. The ability to understand a WebAssembly bi-
nary is relevant for auditing third-party code and reverse engineering
malware. For example, when a frequently depended-upon npm pack-
age contains a WebAssembly binary, the package distribution platform
may want to check that it does not perform malicious actions, such as
stealing cryptocurrency.25 Because meaningful names, e.g., for func-
tions, are helpful for understanding code [Lawrie et al. 2006], espe-
cially in binaries, we study to what extent WebAssembly binaries pro-
vide meaningful names.

analysis We perform a static analysis to assess two name-related
characteristics of binaries. First, the analysis checks whether a binary
contains a name section. While by default binaries contain names only
for imported and exported program elements, the optional name sec-
tion maps all function indices to identi�ers. Second, the analysis checks
whether the names of imported and exported names are mini�ed. Both
to save space and to obfuscate the code, compilers may shorten names
down to single or two-letter names devoid of information. The analysis
considers a WebAssembly binary as mini�ed if it contains more than
ten import or export names (to exclude small, potentially handwritten
modules), where the average length of those names is ≤ 4 characters
(to account for some imports that are never mini�ed by Emscripten,
thus increasing the average).

results Our results show an interesting di�erence between the full
dataset and binaries found on the Web. In the full data set, many bi-
naries contain a name section (19.6%) but only 4.1% of the binaries
are mini�ed. In contrast, among all binaries found on the Web, only
13.3% contain a name section but 28.8% are mini�ed. These results show
that for a signi�cant fraction of websites, not only mini�ed JavaScript
code [Skolka et al. 2019], but also mini�ed WebAssembly binaries make
it harder to understand what code is running on the client side.

Insight 12. Many WebAssembly binaries on the Web (28.8%) are mini-
�ed and do not contain useful names. To help security analysts under-
stand third-party code, work on decompiling and reverse engineering
WebAssembly is needed. Our work in Chapter 7 is a �rst step in that
direction.

25 https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-
foiled-by-the-npm

https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-foiled-by-the-npm
https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-foiled-by-the-npm
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4.4 summary

This chapter presents a comprehensive empirical study of security prop-
erties, languages, and use cases of a diverse set of real-world WebAs-
sembly binaries. After gathering binaries from several sources, ranging
from source code repositories over packages managers to live websites,
we analyze them through a combination of static code analysis, man-
ual inspection, and statistical analysis. Our study shows that WebAs-
sembly has grown into a diverse ecosystem with new challenges and
opportunities for security researchers and practitioners, e.g., in ana-
lyzing vulnerabilities in WebAssembly binaries, in hardening binaries
against exploitation, and in helping security analysts reverse engineer
binaries. We make the binaries underlying our study, which yields by
far the largest benchmark of WebAssembly binaries to date, available
to support future work.





5 WA S A B I : A DY N A M I C A N A LY S I S
F R A M E WO R K

In the previous Chapters 2, 3, and 4, we have been concerned with un-
derstanding and studying the WebAssembly language and ecosystem
to gather new insights, in particular with a focus on security. In the
following, we aim to also provide concrete and constructive help for
developers. This chapter is the �rst of three (Chapter 5, 6, and 7) to
detail practical tools we built for analyzing WebAssembly binaries. As
discussed in the introduction, program analysis techniques are vital to
ensure the reliability, security, and performance of applications. How-
ever, manually building such tools from scratch requires knowledge of
low-level details of the language and its runtime environment.

This chapter presents Wasabi, the �rst general-purpose framework
for dynamically analyzing WebAssembly. It abstracts over low-level
details and automates the tedious parts of dynamic analysis. Wasabi
provides an easy-to-use, high-level API that allows to observe all Web-
Assembly instructions with their inputs and outputs. It is based on bi-
nary instrumentation, which inserts calls to analysis functions written
in JavaScript into a WebAssembly binary. Dynamically analyzing Web-
Assembly comes with several unique challenges, such as the problem
of tracing type-polymorphic instructions with analysis functions that
have a �xed type, which we address through on-demand monomorphi-
zation. We evaluate Wasabi on compute-intensive benchmarks and
real-world web applications and show that it (i) faithfully preserves the
original program behavior, (ii) imposes an overhead that is reasonable
for heavyweight dynamic analysis, and (iii) makes it straightforward to
implement various dynamic analyses, including instruction counting,
call graph extraction, memory access tracing, and taint analysis.

This chapter shares large parts of its material with the corresponding
publication [Lehmann and Pradel 2019]. The author of this dissertation
is also the main author of that paper and did all of the implementation,
evaluation, and the majority of the writing.

97
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5.1 motivation and contributions

As we introduce in Section 1.2, dynamic analysis tools observe pro-
grams at runtime to help developers with improving the reliability, se-
curity, and performance of their applications. Unsurprisingly, dynamic
analysis tools have a long history of success for languages other than
WebAssembly, with household names such as Memcheck and Valgrind
[Seward and Nethercote 2005] for native programs, coverage tools like
gcov in GCC or JaCoCo for Java,1 or TaintDroid [Enck et al. 2014] for
security and privacy monitoring of Android applications. The need for
dynamic analysis is particularly strong for highly dynamic languages,
such as JavaScript [Andreasen et al. 2017], and for languages with a
lot of low-level control, such as C and C++. As a compilation target
of systems languages (Chapter 4) and with JavaScript as the language
in the common browser host environment, WebAssembly programs sit
exactly at the intersection of these two spheres, making them a prime
target for dynamic analysis.

Authors of a dynamic analysis can usually choose between several
implementation options. One option is to implement an individual ana-
lysis from scratch, e.g., by manually adding code to the program. This is
both tedious and error-prone. If done at the binary level, it also requires
an in-depth understanding of the instruction set and tools to manipu-
late it. A second option is to modify the runtime environment of the
program, e.g., a virtual machine. Again, such modi�cations require de-
tailed knowledge of the virtual machine implementation, and they also
tie the analysis to a particular runtime or often even a speci�c version
of it. Since WebAssembly serves as a compilation target of other lan-
guages, source-level instrumentation of these languages might appear
to be another possible option. However, web applications often rely on
third-party code, for which source code is unavailable at the client-side.

Instead of implementing a dynamic analysis from scratch, or modi-
fying a runtime environment, another robust option is to build upon
general-purpose dynamic analysis frameworks. Table 5.1 lists some ex-
isting popular frameworks: Pin [Luk et al. 2005] and Valgrind [Nether-
cote and Seward 2007] for native programs, DiSL [Marek et al. 2012]
and RoadRunner [Flanagan and Freund 2010] for JVM byte code, and
Jalangi [Sen et al. 2013] for analyzing JavaScript programs. Building

1 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html, https://www.jacoco.org

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.jacoco.org
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Table 5.1: Overview of existing dynamic analysis frameworks for other
platforms and comparison with Wasabi.

Framework (Primary)
Platform Instruments . . . Analysis

Language API Style

Pin x86-64 native binaries C/C++ instrumentation
or callbacks/hooks

Valgrind x86-64 native binaries C low-level
instrumentation

DiSL JVM bytecode Java aspect-oriented
RoadRunner JVM bytecode Java event stream
Jalangi JavaScript source code JavaScript callbacks/hooks

Wasabi WebAssembly bytecode JavaScript callbacks/hooks

on an existing framework reduces the overall e�ort required to build
an analysis and enables the analysis author to focus on the design of
the analysis itself. Unfortunately, there currently is no general-purpose
dynamic analysis framework for WebAssembly.

This chapter presents Wasabi, the �rst general-purpose framework
for dynamic analysis of WebAssembly.2 Wasabi provides an easy-to-
use, high-level API to implement heavyweight analyses that can mon-
itor all low-level behavior. The framework is based on binary instru-
mentation, which inserts WebAssembly code that calls into analysis
functions in between the program’s original instructions. The analyses
themselves are written in JavaScript and implement analysis functions,
called hooks, to perform arbitrary operations whenever a particular in-
struction is executed. To limit the overhead that a dynamic analysis
imposes, Wasabi supports selective instrumentation, i.e., it instruments
only those instructions that are relevant for a particular analysis.

As a simple example of a Wasabi-based analysis, Listing 5.1 shows
our re-implementation of the pro�ling part of a cryptomining detec-
tor [W. Wang et al. 2018]. Unauthorized use of computing resources is
detected by monitoring the WebAssembly program and gathering an
instruction signature that is unique for typical mining algorithms. Im-
plementing the dynamic part of this analysis in Wasabi takes ten lines

2 “Wasabi” stands for WebAssembly dynamic analysis using binary instrumentation.
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1 const signature = {};
2 Wasabi.analysis.binary = function(loc, op) {
3 switch (op) {
4 case "i32.add":
5 case "i32.and":
6 case "i32.shl":
7 case "i32.shr_u":
8 case "i32.xor":
9 signature[op] = (signature[op] || 0) + 1;

10 }};

Listing 5.1: An example Wasabi analysis for detecting cryptominers
through instruction pro�ling, implemented after a description in prior
work [W. Wang et al. 2018].

of JavaScript, which use the framework’s binary hook to keep track of
all executed binary operations. In contrast, the original implementation
is based on a special-purpose instrumentation of WebAssembly that W.
Wang et al. [2018] implemented from scratch. This and more sophisti-
cated analyses (Section 5.6.2) show that Wasabi allows implementing
analyses with little e�ort.

Apart from being the �rst dynamic analysis framework for WebAs-
sembly, Wasabi addresses several unique technical challenges. First, to
provide a high-level API for tracking low-level behavior, the approach
abstracts away various details of the WebAssembly instruction set. For
example, Wasabi bundles groups of related instructions into a sin-
gle analysis hook, resolves relative target labels of branch instructions
into absolute instruction locations, and resolves indirect call targets
to actual functions. Second, Wasabi transparently handles the inter-
action of the WebAssembly code to analyze and the JavaScript code
that implements the analysis. A particular challenge is that WebAs-
sembly functions must statically declare �xed parameter types, while
some WebAssembly instructions are polymorphic, i.e., they can be ex-
ecuted with di�erent numbers and types of arguments. To insert hook
calls for polymorphic instructions, a di�erent monomorphic variant of
the hook must be generated for every concrete combination of argu-
ment types. Wasabi uses on-demand monomorphization to automat-
ically create such monomorphic hooks, but only for those type vari-
ants that are actually present in the given WebAssembly code. Third,
Wasabi faithfully executes the original program and even preserves
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its memory behavior, which is useful to implement memory pro�lers.
To this end, none of the inserted instructions requires access or modi-
�cation of the program’s original memory. Instead, analyses can track
memory operations in JavaScript, i.e., in a separate heap that does not
interfere with the WebAssembly heap.

For our evaluation, we implement eight analyses on top of Wasabi,
including basic block pro�ling, memory access tracing, call graph ana-
lysis, and taint analysis. We �nd that writing a new analysis is straight-
forward and typically takes a few dozens of lines of code. As expected
by design, Wasabi faithfully preserves the original program behavior.
The framework instruments large binaries quickly (e.g., 40 MB in about
15 seconds). The increase in binary size and the runtime overhead im-
posed by Wasabi depend greatly on the program and which instruc-
tions in it shall be analyzed. For most instructions, thanks to selective
instrumentation, code size increases by less than 1%, but in the worst
case, when every single instruction in PolyBench/C is instrumented,
code size increases by 742%. The runtime overhead can be below 1.02x
for analyzing instructions such as drop and select, 2.8x for analyz-
ing calls, and up to 163x when analyzing every single instruction of
heat-3d from the PolyBench/C benchmark suite. These results are in
line with existing frameworks for heavyweight dynamic analysis.

contributions In summary, the work in this chapter has the fol-
lowing contributions:

• We present the �rst general-purpose framework for dynamically an-
alyzing WebAssembly code, an instruction format that is becoming
a cornerstone of future web applications.

• We present techniques to address unique technical challenges not
present in existing dynamic analysis frameworks, including static
resolution of relative branch targets and on-demand monomorphi-
zation of analysis hooks.

• We show that Wasabi is useful as the basis for a diverse set of anal-
yses, that implementing an analysis takes very little e�ort, and that
the framework imposes an overhead that is reasonable for heavy-
weight dynamic analysis.

• We make Wasabi available as open-source, enabling others to build
on it: http://wasabi.software-lab.org.

http://wasabi.software-lab.org
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5.2 overview

This section gives on overview of the design of Wasabi and the deci-
sions that have led to it. Figure 5.1 shows the main components and
their relation. The inputs to our framework, which are provided by an
analysis author, are a WebAssembly binary to analyze (top-left) and a
dynamic analysis written in JavaScript (bottom-left). Available source
code for the program to analyze is not required.

The rationale for choosing JavaScript as the analysis language is
threefold. First, it is widely used on the Web and hence well-known
to web developers and other potential users of Wasabi. Second, Java-
Script is a high-level language, which makes it a convenient choice
for writing dynamic analyses. Third, browsers on the client side and
Node.js on the server side are two common host environments for Web-
Assembly. Both use JavaScript as their programming language. A con-
sequence of this choice is that Wasabi is currently limited to host envi-
ronments with JavaScript support. An interesting direction for future
work is to also compile the dynamic analysis itself to WebAssembly and
merge it with the program code, which would resolve this limitation.

Wasabi operates in two phases: First, static instrumentation of the
binary (top half of Figure 5.1), and second, the actual dynamic analysis
of the application (bottom-half). The �rst phase augments the given
WebAssembly binary with instructions that call into the analysis im-
plementation. To this end, the instructions of the original program
are interleaved with calls to low-level analysis hooks (middle gray box).
Those low-level hooks are generated by Wasabi also during the static
instrumentation phase. They are implemented in JavaScript. Addition-
ally, Wasabi statically extracts information from the program which is
used in the second phase. In the second phase at runtime, the low-level
hooks then call high-level analysis hooks, which the analysis author im-
plements. The Wasabi runtime provides further information, e.g., the
types of functions in the program, to the analysis.

Ahead-of-time binary instrumentation o�ers three important advan-
tages over alternative designs. First, it is independent of the execution
platform that WebAssembly runs on and robust to changes in current
platforms. Suppose we would instead modify a speci�c runtime im-
plementation, e.g., the WebAssembly engine in Firefox, then Wasabi
could not analyze programs executed elsewhere. Moreover, Wasabi
would risk becoming outdated when the execution platform evolves.
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Figure 5.1: Overview of Wasabi, its instrumentation and analysis
phases, and the inputs and outputs.

Second, binary instrumentation enables Wasabi to support binaries
produced by a variety of compilers and makes it independent of the
source language. There are several source languages compiling to Web-
Assembly, e.g., C and C++,3 Rust,4 Go,5 and TypeScript.6 Source-level
instrumentation for all these languages would not scale, and the source
code of WebAssembly running on websites is often unavailable. So
this is not an option if we want to support, e.g., security applications
like reverse engineering. Third, ahead-of-time instrumentation avoids
runtime overhead compared to instrumenting code during the execu-
tion [Bruening et al. 2003; Luk et al. 2005; Nethercote and Seward
2007]. Since WebAssembly, in contrast to other binary formats, does
not su�er from language features that make ahead-of-time instrumen-
tation inherently di�cult, such as self-modifying code or mixed code
and data (Chapter 2), Wasabi can reliably instrument WebAssembly
binaries ahead-of-time.

3 https://emscripten.org, [Zakai 2011]
4 https://www.rust-lang.org/what/wasm, https://github.com/rustwasm
5 https://github.com/golang/go/wiki/WebAssembly, [Musiol 2018], https://tinygo.

org/docs/guides/webassembly/
6 https://www.typescriptlang.org, [Reiser and Bläser 2017]

https://emscripten.org
https://www.rust-lang.org/what/wasm
https://github.com/rustwasm
https://github.com/golang/go/wiki/WebAssembly
https://tinygo.org/docs/guides/webassembly/
https://tinygo.org/docs/guides/webassembly/
https://www.typescriptlang.org
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5.3 analysis api

Wasabi o�ers analysis authors a high-level analysis API, consisting of
23 hooks to be implemented by the analysis. The API is both powerful
enough to enable arbitrary dynamic analyses and high-level enough
to spare the analysis author dealing with irrelevant details. Table 5.2
shows the hooks,7 along with their arguments and the types of the argu-
ments. The hooks can be roughly clustered into six groups: Numerical
operations (const, unary, binary) instructions related to variables and
stack manipulation (local, global, drop, select), memory accesses
and management instructions (load, store, memory.size, memory.grow),
function calls (call_pre, call_post, return), unconditional and condi-
tional branches (br, br_if, br_table), and blocks (begin, end). When
invoked, each hook receives details about the respective instruction,
e.g., a string representation of the operation (op), its inputs and out-
puts, and the code location (�rst row of the table).

The API is designed to ensure four important properties:
• Full instruction coverage. It covers all WebAssembly instructions and

provides all their inputs and results to the analysis. This property
is crucial to implement arbitrary dynamic analyses that can observe
all runtime behavior. We describe in Section 5.4 how selective instru-
mentation limits the costs to be paid for this �exibility.

• Grouping of instructions. The API groups related WebAssembly in-
structions into a single hook, which signi�cantly reduces the num-
ber of hooks analyses must implement. Providing one hook per in-
struction to the analysis would require a huge number of hooks (e.g.,
there are 123 numeric instructions alone), whereas Wasabi’s API
provides 23 hooks only. To distinguish between instructions, if nec-
essary, the hooks receive detailed information as arguments. For ex-
ample, the binary hook receives an op argument that speci�es which
binary operation is executed. To hide the various variants of poly-
morphic instructions from analyses authors, Wasabi also maps all
variants of the same kind of instruction into a single hook. For ex-
ample, the call instruction can take di�erent numbers and types of
arguments, depending on the called function, which are represented
in the hook as an array of varying length.

7 For brevity, the table leaves out four additional hooks that Wasabi supports – start,
nop, unreachable, and if – for a total of 23 hooks.
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Table 5.2: API of the high-level analysis hooks.

Hook Name Hook Arguments and Their Types

Every hook location: {func: number, instr: number}, other arguments . . .

Simple, numerical operations:
const op, value: typeval
unary op, input: typeval, result: typeval
binary op, first: typeval, second: typeval, result: typeval
where op: string of the instruction, e.g., "i32.add" or "local.get"

Variables and stack management:
local /global op, index: number, value: typeval
drop value: typeval
select condition: boolean, first: typeval, second: typeval

Memory instructions:
load /store op, memarg, value: typeval
where memarg: {addr: number, offset: number}

memory.size currentSizePages: number

memory.grow byPages: number, previousSizePages: number

Function calls and returns:
call_pre func: number, args: [typeval], tableIndex: (number | null)
where tableIndex == null i� it was a direct call

call_post results: [typeval]
return results: [typeval]

Branches:
br target

br_if target, condition: boolean

br_table table: [target], tableIndex: number

where target: {label: number, location: location}

Block entry and exit hooks:
begin type

end type, begin: location, if: (location | null)
where type: ("function" | "block" | "loop" | "if" | "else"),

if != null i� the end terminates an else block
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Figure 5.2: Mapping of WebAssembly types to JavaScript.

• Pre-computed information. Wasabi provides pre-computed informa-
tion along with the runtime values to some hooks because the val-
ues from WebAssembly execution on their own are not informative
enough for an analysis. For example, a relative branch label would
not be helpful to a dynamic analysis without additional context of
the surrounding blocks (cf. Section 2.2). For this reason, the three
branch-related hooks receive target objects that contain the stati-
cally resolved, absolute location of the next instruction that will be
executed if the branch is taken (target.location), alongside the low-
level relative branch label (target.label). Similarly, for indirect calls,
Wasabi resolves the table index to the actually called function.

• Faithful type mappings. Finally, the API faithfully maps typed values
from WebAssembly to JavaScript. Figure 5.2 shows the four primi-
tive types in WebAssembly and how they are represented without
loss of precision in a Wasabi analysis. i32, f32, and f64 are repre-
sented with the JavaScript number type. However, because JavaScript
numbers are �oating-point values, they can only represent integers
up to 253 − 1 without loss of precision. To pass 64-bit numbers to
JavaScript, Wasabi thus transparently maps them to long.js8 ob-
jects. Finally, conditionals, which are i32s with value 0 or 1 in Web-
Assembly, are mapped to JavaScript booleans.
The API gives analysis authors the power to implement sophisti-

cated dynamic analyses with little e�ort. In particular, it is straightfor-
ward to implement memory shadowing [Nethercote and Seward 2007],
a feature useful, e.g., for tracking the origin of undesired values or
for taint analysis. To associate some meta-information with a memory
value, all an analysis must do is to maintain a map of memory locations
to meta-information, and to update the meta-information on memory-
related instructions. One of our example analyses (Section 5.6.2) is a
taint analysis that implements memory shadowing in this way.
8 https://github.com/dcodeIO/long.js

https://github.com/dcodeIO/long.js
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5.4 static binary instrumentation

The following presents the core of Wasabi: its static binary instrumen-
tation component, which inserts code that eventually calls the high-
level analysis hooks described in the previous section. We �rst describe
the instrumentation of individual, simple WebAssembly instructions
(Section 5.4.1) and how Wasabi reduces overhead via selective instru-
mentation (Section 5.4.2). Then, we highlight four instrumentation chal-
lenges that are unique to WebAssembly and describe how Wasabi ad-
dresses them (Sections 5.4.3 to 5.4.6).

5.4.1 Instrumentation of Instructions

To allow an analysis to trace every instruction that is executed, Wasabi
inserts calls to analysis hooks for each instruction. Table 5.3 illustrates
the instrumentation for a subset of all instructions. Row 1 shows the
simplest case: a const instruction that pushes an immediate value on
the stack. The instrumentation adds a call of the corresponding hook.
Since the hook also receives the value produced by the const instruc-
tion as an argument, the value is pushed once more on the stack prior
to the call. After the call to the hook, the stack will be the same as in
the original, uninstrumented program.

Row 2 of Table 5.3 shows an instruction that takes inputs and pro-
duces results. To pass both to the inserted hook call, we need to dupli-
cate values on the stack. For this purpose, Wasabi generates a fresh
local of the appropriate type and writes the current stack top to this
local with local.tee. Before the hook call, the inserted code retrieves
the stored input and its result with local.get. Row 4 illustrates how
Wasabi instruments call instructions. In contrast to other instruc-
tions, we surround the original call instruction with two hook calls, so
that an analysis author can execute analysis behavior before and after
the function call.

All inserted calls go to JavaScript functions that are imported into
the WebAssembly binary. These imported functions are not yet the
high-level hooks from Section 5.3, but low-level hooks that are automat-
ically generated by Wasabi. There are several reasons for this indirec-
tion. First, it allows Wasabi to map typed WebAssembly instructions
to untyped JavaScript hooks in a seamless way (Section 5.4.3). Second,
it helps providing information that is useful in high-level hooks but not
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Table 5.3: Instrumentation of select WebAssembly instructions. Every hook also receives two i32 arguments that encode the
original instruction’s location. For brevity, we omit the corresponding i32.const instructions preceding the hook call here.

#
Instructions

Explanations and other changes made to the module
Original ⇒ Instrumented

Instructions that only produce a value, here a simple constant instruction:

1
i32.const value i32.const value

i32.const value
call idx hooks.i32.const

Original instruction
Duplicate the value, to pass as an argument for the hook
Call low-level analysis hook, added as an imported function to module

General instructions that take inputs (e.g., unary, binary, load, store):

2
f32.abs

local.tee idxtemp input local
f32.abs
local.tee idxtemp result local
local.get idxtemp input local
local.get idxtemp result local
call idx hooks.f32.abs

Save instruction input(s) into freshly generated local(s)
Original instruction
Save instruction result into freshly generated local}

Push instruction input(s) and result as hook arguments on the stack
Call low-level analysis hook, stack is now as it was after the instruction

Type-polymorphic drop and select instructions:

3
. . .

(preceding code)
. . .

drop

. . .

(preceding code)
. . .

call idx hooks.drop_typeval

Type check all instructions to keep track of abstract stack
Here: assume at the top of the stack is a value of type typeval
Thus, the following drop has type [typeval]→ []

Monomorphized hook (here: consumes the value in place of drop)
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#
Instructions

Explanations and other changes made to the module
Original ⇒ Instrumented

Calls (call and call_indirect) and similarly also returns:

4
call idxfunc

local.tee idxtemp input local
i32.const idxfunc
local.get idxtemp input local
call idx hooks.call_pre_(typelocal)*
call idxfunc
local.tee idxtemp result local
local.get idxtemp input local
call idx hooks.call_post_(typelocal)*

Save function argument(s) in freshly generated local(s)
Pass index of called function to hook}

Pass arguments to monomorphized call_pre hook

Original function call
Save call result(s) in freshly generated local(s)}

Pass results to monomorphized call_post hook

Instructions with i64 inputs or results (here: i64 constant); the i64 values are split into two i32s for passing to the hook:

5

i64.const value i64.const value
i64.const value
i32.wrap/i64
i64.const value
i64.const 32

i64.shr_s
i32.wrap/i64
call idx hooks.i64.const

If instruction has side-e�ects, the values are duplicated via a local instead}
Push lower 32 bits of the value as an i32 onto the stack Shift upper 32 bits to the right, then push as i32 onto the stack

Call hook with pair of (i32, i32) instead of the original i64 value
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#
Instructions

Explanations and other changes made to the module
Original ⇒ Instrumented

Blocks/structured control-�ow (block, loop, if, else, end) and branches (br, br_if, br_table):

6

label : block

otherlabel : loop

...

br 1 (label)
...

end

end

label : block
call idxhooks.begin_block
otherlabel : loop

call idxhooks.begin_loop
...

i32.const 1 (label)
i32.const resolve(label)
call idxhooks.br
call idxhooks.end_loop
call idxhooks.end_block
br 1 (label)
...

call idxhooks.end_loop
end
call idxhooks.end_block

end

label is implicit and not encoded in the WebAssembly binary
Every block type (block/loop/if/else) has its own low-level begin hook
Nested block (here: a loop)
The loop’s begin hook is called once per iteration
Block body (instrumented recursively)
“Raw” (unresolved, relative) target label is passed to hook as an integer
Resolve label during instrumentation to absolute location, also pass to hook
Branch hook is invoked before taking the branch}

Call end hooks of blocks “traversed” during the branch

(Not shown:) end hooks receive location of matching block begin
Every block type (block/loop/if/else) has its own end hook (cf. begin_*)
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available at the current instruction (Section 5.4.4). Third, Section 5.4.5
shows that Wasabi sometimes also calls other hooks at runtime, be-
cause the necessary information which hooks to call is available only
then. Finally, the low-level hooks can convert values before passing
them to the high-level hooks (Section 5.4.6). All of these issues can
be solved by automatically generated low-level hooks that are hidden
from analysis authors.

5.4.2 Selective Instrumentation

Not every analysis uses all of the hooks provided by the API from Sec-
tion 5.3. To reduce both the code size and the runtime overhead of the
instrumented binary, Wasabi supports selective instrumentation. That
is, only those kinds of instructions are instrumented that have a match-
ing high-level hook in a given analysis. Wasabi ensures that the instru-
mentation for di�erent kinds of instructions are independent of each
other, so that instrumenting only some instructions still correctly re-
�ects their behavior. Sections 5.6.5 and 5.6.6 show that selective instru-
mentation signi�cantly reduces code size and runtime overhead.

5.4.3 On-Demand Monomorphization

An interesting challenge for the instrumentation comes from static typ-
ing in WebAssembly. While there are polymorphic instructions, Web-
Assembly functions, including our hooks, must always be declared with
a �xed, monomorphic type. For polymorphic instructions, Wasabi can-
not simply generate one hook per kind of instruction: Consider drop

with the polymorphic instruction type [g]→ [ ]. (That is, it pops an ar-
gument of any type g from the stack and pushes no value.) Inserting a
call to the same hook function after each drop is not possible, because
the hook’s function type would then be polymorphic. Instead, Wasabi
generates multiple monomorphic variants of a polymorphic hook and
inserts a call to the appropriate monomorphic low-level hook.9

For many polymorphic instructions, determining which monomor-
phic hook variant to call is straightforward. For example, the instruc-
tion type of global.set depends only on the type of the referenced vari-
able. The types of drop and select, however, cannot be simply looked
9 This strategy is similar to the compilation of generic functions in Rust or instantiation

of function templates in C++ [Klabnik and Nichols 2018; Vandevoorde and Josuttis
2002].
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up. Instead, as shown in row 3 of Table 5.3, their type depends on all
preceding instructions. Wasabi thus performs full type checking dur-
ing instrumentation, that is, it keeps track of the types of all values
on the stack [Haas et al. 2017; Watt 2018]. When the drop in the last
line of the example is encountered, its input type is equal to the top
of the abstract stack and Wasabi can insert the call to the matching
monomorphic low-level hook.

While creating monomorphic variants of hooks yields type-correct
WebAssembly code, doing so eagerly leads to an explosion of the re-
quired number of monomorphic hooks. Since functions can have an
arbitrary number of arguments and results10, the number of monomor-
phic hooks for calls and returns is even unbounded. One way to ad-
dress this problem would be to set a heuristic limit, e.g., by generat-
ing hooks for calls with up to ten arguments. However, the resulting
410 = 1,048,576 call-related hooks would cause unnecessary binary bloat
and may still fail to support all calls.

Instead, Wasabi generates monomorphic hooks on-demand only for
instructions and type combinations that are actually present in the
given binary. We call this approach on-demand monomorphization of
hooks. During instrumentation, Wasabi maintains a map of already
generated low-level hooks. If a required hook, e.g., for a call instruc-
tion with type [i32]→ [f32], is present in the map, the function index
of the hook is returned. Otherwise, Wasabi generates the hook and
updates the map. Our evaluation shows that on-demand monomorphi-
zation signi�cantly reduces the number of low-level hooks, and hence
the code size, compared to the eager approach described above.

5.4.4 Resolving Branch Labels

As described in Section 2.2, WebAssembly relies on structured control-
�ow, a feature not present in other low-level instruction sets. An in-
teresting challenge that arises from structured control-�ow is how and
when to resolve the destination of branches. Row 6 of Table 5.3 illus-
trates the problem with a few control-�ow-related instructions. The br

instruction jumps to a destination referenced by a relative integer la-
bel 1. However, passing this label to the high-level dynamic analysis
API would be of limited use, because without additional static infor-

10 Strictly speaking, functions in the binary format 1.0 have at most one result, but the
formal semantics already support multiple return values [Haas et al. 2017].
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Figure 5.3: Abstract control stack at the br instruction in row 6 of
Table 5.3 (assuming the block is preceded by three other instructions).

mation (namely the surrounding blocks), the dynamic analysis cannot
resolve the label to a code location.

To enable analysis authors to reason about branch destinations with-
out implementing their own static analysis, Wasabi resolves branch
labels during the instrumentation and passes the resulting absolute
instruction locations to the high-level API. To resolve branch labels,
Wasabi keeps track of an abstract control stack while instrumenting
WebAssembly code. Whenever the instrumentation enters a new block,
an element is pushed to the control stack, consisting of the block type
(function, block, loop, if, or else), the location of the block begin, and
the location of the matching end instruction. Whenever the instrumen-
tation encounters the end of a block, the topmost entry is popped of
the control stack. As an example, Figure 5.3 shows the control stack for
the code in row 6 of Table 5.3.

Given the abstract control stack, Wasabi can determine during in-
strumentation what code location a branch, if taken, will lead to. At ev-
ery branch to a label=, Wasabi queries the control stack for its= + 1-th
entry from the top, to determine the targeted block, and then computes
the location of the next instruction from the block type and the loca-
tions of the begin and end instructions. This absolute instruction loca-
tion is then given as an argument to the branch hook, as shown in the
example in Table 5.3 and in the high-level API in Table 5.2.

5.4.5 Dynamic Block Nesting

Another control-�ow-related challenge is about observing the end of
the execution of a block. Some analyses may want to observe the block
nesting at runtime, i.e., to perform some action when a block is entered
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and left. For this purpose, Wasabi o�ers the high-level begin and end

hooks (Section 5.3). The example in row 6 of Table 5.3 shows that our
instrumentation adds the respective hook calls (call idxhooks.begin_block
and call idxhooks.end_block) at the beginning of a block and before the
matching end.

Unfortunately, branching or returning will jump out of a block and
over the inserted end hook calls. Consider the last two hook calls of
hooks.end_loop and hooks.end_block in Table 5.3. They are not exe-
cuted because the earlier br 1 directly transfers control to after the
enclosing block. To account for that, Wasabi adds additional calls be-
fore each branch and return that invoke every end hook of the blocks
that will be “traversed” during the jump. That is, as the example shows,
Wasabi inserts calls to the end hooks for the two enclosing blocks prior
to the br 1 instruction. Again, the control stack can tell us which end
hooks need to be called, namely all between the current block (stack
top, inclusive) and the branch target block (also inclusive). For exam-
ple, in Figure 5.3, the instrumented code calls the loop and block end
hooks. For a return it would be all blocks on the block stack up to and
including the function block.

For conditional branches (br_if), we call the end hooks for traversed
blocks only if the branch is actually taken. Similarly, for multi-way
branches (br_table), which branch is taken (and thus which blocks are
left) is known only at runtime. Thus, the instrumentation statically ex-
tracts the list of ended blocks for every branch table entry and stores
this information. Inside the low-level hook for br_table, one of the
stored branch table entries will then be selected, before calling the cor-
responding end hooks at runtime.

5.4.6 Handling i64 Values

As mentioned in Section 5.3, i64 values cannot be represented pre-
cisely with the JavaScript number type, because it is a double preci-
sion �oating-point number. To nevertheless enable dynamic analyses
to faithfully observe all runtime values, including i64 values, Wasabi
splits a 64-bit integer into two 32-bit integers to pass them to Java-
Script. For every i64 stack value (either produced by a const or by any
other instruction), we thus insert instrumentation as shown in row 5
of Table 5.3. The inserted code duplicates the i64 value twice. From the
�rst copy only the lower 32 bits are extracted, and the second copy is
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shifted to the right to result in the upper 32 bits. Both i32 values can
then be passed to the hook in question. On the JavaScript side, the low-
level hook joins the two 32-bit values into a long.js object, enabling
an analysis to faithfully reason about 64-bit integers.11

5.5 implementation

We have implemented the static instrumentation component ofWasabi
in about 5000 lines of Rust code. This includes a parser for the WebAs-
sembly binary format, data type de�nitions of an AST, a type checker,
and the other static analyses Wasabi performs during instrumentation,
e.g., statically resolving relative branch labels to absolute instruction lo-
cations. Rust programs themselves can be compiled to WebAssembly,
which gives us the option to run Wasabi in the browser and instru-
ment WebAssembly programs at load time in the future.

To reduce the time required for instrumenting large binaries (large
WebAssembly binaries can have more than 100,000 functions), Wasabi
can parse and instrument multiple functions in parallel. For parallel
parsing, we exploit that the WebAssembly binary format contains sec-
tion sizes that allow to jump ahead to the next section (as described
Section 2.1). Once parsed, individual functions can be instrumented al-
most fully independently of each other. The only synchronization point
is the map of low-level hooks created during on-demand monomor-
phization (Section 5.4.3), which is guarded by an upgradeable multiple
readers/single writer lock.

Our implementation is available for others to build on under the
permissive MIT license at http://wasabi.software-lab.org. We have
also reused the binary parser and AST components of Wasabi our-
selves in the Fuzzm project, described in Chapter 6.

5.6 evaluation

To evaluate Wasabi, we focus on �ve research questions:

RQ1 How easy is it to write dynamic analyses with Wasabi?

11 An alternative would be to use the BigInt type in JavaScript (https://github.com/
tc39/proposal-bigint). However, this was only standardized in late 2019 and became
widely available in browsers in 2020, after we had already developed Wasabi.

http://wasabi.software-lab.org
https://github.com/tc39/proposal-bigint
https://github.com/tc39/proposal-bigint
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RQ2 Do the instrumented WebAssembly programs remain faithful to
the original execution?

RQ3 How long does it take to instrument programs?

RQ4 How much does the code size increase?

RQ5 What is the runtime overhead due to instrumentation?

5.6.1 Experimental Setup

For the evaluation, we apply Wasabi to 32 programs in total. 30 of
them are from the PolyBench/C benchmark suite,12 which has also been
used in the evaluation of the paper introducing WebAssembly [Haas
et al. 2017]. In total, the PolyBench benchmark suite comprises 5,163
non-empty, non-comment lines of C code. We compile the PolyBench
programs to WebAssembly with Emscripten version 1.38.8, resulting in
790 KB of WebAssembly binaries. Moreover, we use two complex, real-
world WebAssembly binaries without access to their source code: the
Unreal Engine 4 Zen Garden demo,13 as an example of a major game
engine running in the browser, and the PSPDFKit benchmark,14 which
exercises a commercial library for in-browser rendering and annota-
tion of PDFs. Their WebAssembly binaries are much larger than the
PolyBench binaries, with sizes of 39.5 MB (Unreal demo) and 9.5 MB
(PSPDFKit), respectively.

All experiments are performed on a laptop computer with an Intel
Core i7-7500U CPU (2 cores, hyper-threading, 2.7 to 3.5 GHz, 4 MB L3
cache) and 16 GB of RAM. The operating system is Ubuntu 17.10 64-
bit. To execute the WebAssembly programs, which are embedded into
websites, we use a nightly version of Firefox 63.0a1 (2018-08-02).

5.6.2 RQ1: Ease of Implementing Analyses

We have implemented eight dynamic analyses on top of Wasabi. Ta-
ble 5.4 lists them, along with the hooks they implement and their total
lines of JavaScript code.

12 http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
13 The original link has since been removed, but an alternative sourceh is https://www.

unrealengine.com/marketplace/en-US/product/epic-zen-garden
14 https://pspdfkit.com/webassembly-benchmark/

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.unrealengine.com/marketplace/en-US/product/epic-zen-garden
https://www.unrealengine.com/marketplace/en-US/product/epic-zen-garden
https://pspdfkit.com/webassembly-benchmark/
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Table 5.4: Dynamic analyses we built on top of Wasabi.

Analysis Used Analysis Hooks LoC

Instruction mix analysis all 42
Basic block pro�ling begin 9
Instruction coverage all 11
Branch coverage if, br_if, br_table, select 14
Call graph analysis call_pre 18
Dynamic taint analysis all 208
Memory access tracing load, store 11
Cryptominer detection binary 10

instruction mix analysis This analysis counts how often each
kind of instruction is executed, which can serve as a basis for perfor-
mance and security analyses.

basic block profiling A classic dynamic analysis that counts
how often each function, block, and loop is executed, which is useful,
e.g., for �nding “hot” code.

instruction and branch coverage These analyses record
for each instruction and branch, respectively, whether it is executed,
which is useful to assess the quality of tests.

call graph analysis This analysis creates a dynamic call graph,
including indirect calls and calls between functions that are neither im-
ported nor exported. Call graphs are the basis of various other analyses,
e.g., to �nd dynamically dead code or to reverse-engineer malware.

taint analysis The analysis associates a taint with every value
and tracks how taints propagate through instructions, function calls,
and memory accesses, to detect illegal �ows from sources to sinks.

memory access tracing The analysis tracks all memory accesses
and stores them for later o�-line analysis, e.g., to detect cache-unfriendly
access patterns.

cryptominer detection As discussed in the introduction, this
analysis gathers a signature based on the frequency of binary instruc-
tions to identify mining of cryptocurrencies [W. Wang et al. 2018].
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1 // A sparse array from function index and instruction index
2 // to a list of taken branches/conditionals.
3 const coverage = [];
4 function addBranch({func, instr}, branch) {
5 // Make sure the list of branches is initialized.
6 coverage[func] = coverage[func] || [];
7 coverage[func][instr] = coverage[func][instr] || [];
8 // Add the branch to the list.
9 if (!coverage[func][instr].includes(branch)) {
10 coverage[func][instr].push(branch);
11 }
12 }
13 // High-level hooks implementation.
14 Wasabi.analysis = {
15 // These are all conditional branching instructions:
16 if_(location, condition) { addBranch(location, condition) },
17 br_if(location, target, condition) { addBranch(location, condition) },
18 br_table(location, tbl, df, tableIdx) { addBranch(location, tableIdx) },
19 select(location, condition) { addBranch(location, condition) },
20 };

Listing 5.2: Simple branch coverage analysis with Wasabi.

As illustrated by the low numbers of lines of code in Table 5.4, each of
these analyses can be implemented with little e�ort. For further illus-
tration, Listing 5.2 shows the implementation of the branch coverage
analysis. It implements four hooks, if, br_if, br_table, and select to
keep track of all branches.

5.6.3 RQ2: Faithfulness of Execution

To validate that Wasabi’s instrumentation does not modify the seman-
tics of the original program, we compare the behavior of each unmod-
i�ed binary with the behavior of the fully instrumented binary. For
the PolyBench programs, we compile each program with an option to
output intermediate results of every calculation on the console. Simi-
larly, the Unreal Engine demo has a mode to check that the pixel val-
ues of rendered frames are the same as pre-de�ned reference frames.
For all these programs, the behavior remains unchanged after instru-
mentation. The PSPDFKit benchmark does not provide any built-in cor-
rectness check; based on our manual observations the behavior of the
original and instrumented code appear to be the same.
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Table 5.5: Time taken to instrument WebAssembly binaries, averaged
across 20 runs (and across 30 programs for the PolyBench suite).

Program Binary Size (B) Runtime (ms) MB
s

PolyBench (30 programs) 26 332 ± 299 23 ± 1.4 1.15
PSPDFKit 9 615 389 5 129 ± 65 1.87
Unreal Engine 4 39 510 398 15 481 ± 293 2.55

As another way to validate the instrumented WebAssembly bina-
ries, we use the static WebAssembly validator, which checks that the
instrumented binaries are well-formed and type-correct [WebAssem-
bly Speci�cation]. Running wasm-validate from the WebAssembly Bi-
nary Toolkit15 on all 32 fully instrumented programs shows that all
the instrumented code passes the validator. We also instrument and
successfully validate Wasabi’s output on all programs of the o�cial
WebAssembly speci�cation test suite,16 which consists of 63 additional
programs on top of the 32 programs of our benchmark suite.

5.6.4 RQ3: Time to Instrument

Table 5.5 shows how long Wasabi takes to instrument the programs.
The G ± ~ notation means a mean value of G and a standard deviation
of ~ after 20 repetitions. For readability, we have summarized the re-
sults for all 30 PolyBench programs in one row. While the PolyBench
programs are of similar, small size (26.3 KB± 299 B), the PSPDFKit and
Unreal Engine binaries are considerably larger (9.6 MB and 39.5 MB, re-
spectively). Instrumentation takes 23ms, on average, for the PolyBench
programs, i.e., it is almost instantaneous, and still quick for the larger
PSPDFKit (5s) and Unreal Engine binaries (15.5s). Wasabi’s instrumen-
tation is parallelized (Section 5.5), and these numbers are obtained with
four threads running on two physical cores. The single-threaded in-
strumentation time on the large Unreal Engine binary is on average
26.5s, showing that the parallelization reduces the execution time to
15.5/26.5 ≈ 0.58 of the single-threaded time. The last column of Ta-
ble 5.5 reports the throughput, i.e., binary code processed per second,
showing that the throughput increases with larger binary sizes.

15 https://github.com/WebAssembly/wabt
16 https://github.com/WebAssembly/spec/tree/master/test

https://github.com/WebAssembly/wabt
https://github.com/WebAssembly/spec/tree/master/test
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5.6.5 RQ4: Code Size Overhead

Figure 5.4 presents the increase in binary code size after instrument-
ing a program. Since many analyses need only a small subset of all
hooks (e.g., block pro�ling needs only begin), we evaluate code size
increase per required hook, as provided by selective instrumentation
(Section 5.4.2). For each hook on the x-axis, the �gure shows on the y-
axis the increase in binary size as a percentage of the original program
size. That is, 0% means the instrumented binary has the same size as
the original one and 100% means the program doubled in size due to
instrumentation.

With selective instrumentation, more than half of the hooks increase
the binary size only by a negligible amount or not at all (less than 1%
increase for nop, unreachable, memory.size, memory.grow, select, and
br_table; less than 10% for drop, return, unary, global, if, br, and
br_if, on average). In fact, in several cases the Unreal Engine binary
size decreased by 1% because Wasabi encodes indices more compactly
than the original binary. This is because of the leb128 variable-length
format used to encode integers in WebAssembly (see Section 2.1). It
allows for multiple equivalent encodings of the same number with dif-
ferent lengths.

Naturally, hooks for instructions that appear very often in the pro-
gram have the largest in�uence on the code size, e.g., memory load and
store (between 39% and 58% increase), begin and end of blocks (11% –
84%), pushing to the stack with const (59 – 71%), operations on locals
(128 – 180%), and �nally binary instructions (83 – 190%). The di�erence
for the binary hook between PolyBench and the other programs can
be explained by the former being mostly numerical computation (thus
having more binary instructions such as i32.mul), whereas PSPDFKit
and the Unreal Engine have more diverse code. When instrumenting
for all hooks together, which is not required for many analyses, the size
increases between 495% (Unreal Engine 4) and 743% (mean across the
30 PolyBench/C programs). This result shows that selective instrumen-
tation is very e�ective in reducing the binary size, compared to blindly
instrumenting all instructions.

To evaluate Wasabi’s on-demand monomorphization of hooks, we
count how many low-level hook functions are inserted during full in-
strumentation. For PolyBench, between 110 (floyd-warshall program)
and 122 (deriche) hooks are inserted, 302 hooks for PSPDFKit, and
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Figure 5.4: Binary size increase in percent of the original size, when instrumenting the test programs for di�erent analysis
hooks. For readability, binary sizes for the 30 PolyBench programs are shown averaged.
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783 hooks for the Unreal Engine. In the original Unreal Engine binary,
i.e., a real-world WebAssembly program, the call with the largest num-
ber of arguments passes 22 i32 values (!), which clearly shows that ea-
gerly generating all possible monomorphic combinations of call hooks
(422 ≈ 1.7 × 1013) is simply not possible. Even in the small PolyBench
programs, calls to functions with 6 arguments are common. For these
programs, generating no more than 122 hooks on-demand is much bet-
ter than generating all 46 = 4,096 hooks for call instructions plus some
more for other instructions.

5.6.6 RQ5: Runtime Overhead

Finally, Figure 5.5 shows how much runtime overhead the instrumenta-
tion imposes. On the y-axis, we show the runtime of the instrumented
program relative to the original program, that is, a value of 1.0x means
the runtime does not increase due to instrumentation. While we did
run 20 repetitions of the measurements, the variance was too small for
whiskers to be visible in the plot.

Similar to the results for code size, most of the hooks contribute only
a small runtime overhead: nop, unreachable, memory.size, memory.grow,
select, drop, and unary each impose less than 1.02x overhead, on av-
erage. Instrumenting for return or call hooks, which are su�cient
for many interesting analyses at the function level, incurs a reasonable
overhead of up to 1.3x and 2.8x, respectively. More expensive hooks
are begin and end for observing blocks, which incur between 1.5x and
9.9x runtime overhead (depending on the program), 1.8x – 20x for load,
up to 6.5x for store, 2x – 32x for const, 4x – 48.5x for operations on
locals, and 2.6x – 77.5x for binary operations. When instrumenting for
all hooks, the runtime overhead is between 49x and 163x. Note that the
overheads for the PolyBench programs, which perform only numerical
computations, are much higher than for the real-world workloads in
PSPDFKit and the Unreal Engine. Typical WebAssembly programs call
out to the host environment, e.g., to perform shading in WebGL, mod-
ify the DOM, or interact with some other Web API, so any overhead
imposed by Wasabi contributes only to parts of the total execution
time.

When comparing the overhead results to existing heavyweight dy-
namic analysis frameworks for other languages, we �ndWasabi’s over-
head to be reasonable. The widely-used JavaScript analysis framework
Jalangi reports overheads with the empty analysis in the same order
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of magnitude, namely 26x during record plus 30x during replay, on av-
erage [Sen et al. 2013]. Similarly, the RoadRunner analysis framework
for JVM byte code reports an average slowdown of 52x without any
analysis [Flanagan and Freund 2010].

5.7 summary

This chapter presents Wasabi, a general-purpose dynamic analysis
framework for WebAssembly. The framework instruments WebAssem-
bly binaries ahead-of-time and inserts code into the binary that calls
into analysis hooks implemented in JavaScript. Besides being the �rst
dynamic analysis framework for WebAssembly, Wasabi addresses sev-
eral unique challenges that did not occur in dynamic analysis tools for
other platforms. In particular, we handle the problem of tracing poly-
morphic instructions with analysis functions that have a �xed type via
an on-demand monomorphization of analysis hooks, and we statically
resolve relative branch labels in control-�ow constructs during the in-
strumentation. The high-level API provided to analysis authors allows
for implementing otherwise complex analyses with a few dozens of
lines of code, while still providing a complete view of the execution.
Our evaluation with both compute-intensive benchmark programs and
real-world web applications shows 1.02x to 163x runtime overhead, de-
pending on the program and which instructions are analyzed, which is
reasonable for heavyweight dynamic analysis.

We believe that Wasabi provides a solid basis for various analyses
to be implemented in the future. As an interesting challenge for future
work, we envision cross-language dynamic analysis, in particular, to
analyze applications that run both JavaScript and WebAssembly code.





6 F U Z Z M : F I N D I N G A N D M I T I G AT I N G
M E M O R Y E R R O R S

We demonstrate in Chapter 3 that vulnerabilities in memory-unsafe
source languages can translate into exploitable WebAssembly binaries.
Our results in Chapter 4 further show that many real-world binaries are
potentially susceptible to such attacks. Unfortunately, remedies such as
changing the WebAssembly language or rewriting programs in safer
source languages are not easily implemented, so we must tackle mem-
ory errors in WebAssembly binaries with additional techniques.

This chapter presents Fuzzm, the �rst binary-only fuzzer for WebAs-
sembly. It can be applied to WebAssembly binaries and does not require
source code access. We combine static binary instrumentation to detect
memory errors on the stack and heap, instrumentation for collecting
coverage, and e�cient interaction between native input generation and
the program running in a WebAssembly VM, into a fast and e�ective
WebAssembly fuzzer. Besides as an oracle for fuzzing, our instrumen-
tation also serves as a stand-alone hardening technique to prevent the
exploitation of vulnerable binaries in production. We evaluate Fuzzm
with 28 real-world WebAssembly binaries, both well-known software
projects and binaries found in the wild without access to their source
code. Fuzzm’s performance is close to native AFL, despite WebAssem-
bly being a bytecode and running in a VM. On average, Fuzzm gener-
ates 1,232 inputs and triggers 40 crashes per program in 24 hours, at
321 program executions per second. When used for binary hardening,
our instrumentation e�ectively prevents the exploits from Chapter 3
while imposing only 2% to 35% runtime overhead.

This chapter shares large parts of its material with a publication
that is currently under submission [Lehmann, Torp, et al. 2021]. The
project is joint work with the second author of the publication. The
dissertation author developed the underlying instrumentation frame-
work for WebAssembly, contributed to the canary and coverage imple-
mentations and the evaluation, and wrote major parts of the paper.
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6.1 motivation and contributions

While WebAssembly prevents some security issues by design (see Sec-
tion 2.2), source-level vulnerabilities may still propagate to WebAssem-
bly binaries, as discussed in Chapter 3. Surprisingly, memory vulnera-
bilities in WebAssembly binaries can sometimes be even more easily
exploited than when the same source code is compiled to native code.

To �nd vulnerabilities, coverage-guided greybox fuzzing has proven
to be extremely e�ective [Böhme et al. 2020, 2019; Hazimeh et al. 2020;
Zeller et al. 2022]. For example, Google’s OSS-Fuzz project has found
tens of thousands of vulnerabilities in widely used software.1 Among
others, OSS-Fuzz employs AFL, widely regarded has a very practical
fuzzer.2 A greybox fuzzer automatically generates inputs that gradually
explore the target program in the hope of triggering a vulnerability. For
that, it requires (i) lightweight feedback from the execution, e.g., cover-
age information, to guide the input generation, and (ii) runtime oracles
that make a vulnerability apparent, e.g., by crashing the program.

A greybox fuzzer for WebAssembly would be highly desirable, but
several characteristics of WebAssembly must be taken into account.
First, WebAssembly is a compilation target for multiple source lan-
guages, including C, C++, Rust, Go, and several others (Chapter 4). A
fuzzer aimed at a speci�c source language could thus analyze only a
subset of all real-world binaries. Second, the source code of a WebAs-
sembly binary may not be available, e.g., when analyzing third-party
websites, third-party libraries, or in-house legacy applications. Even if
the source code is available, adopting a fuzzer into the development
work�ow is more di�cult if it requires changes to the build system
or a particular compiler. Third, even when compiling from the same
source code, the security-relevant behavior of a program compiled to
WebAssembly may di�er from the same program compiled to native
code. We illustrate this with an example in Section 6.2. As a result,
fuzzing a binary compiled for another platform, e.g., x86 [Choi et al.
2019; Dinesh et al. 2020], is insu�cient to expose memory errors in
WebAssembly binaries. Taken together, these characteristics motivate
a fuzzer explicitly targeting WebAssembly binaries. However, despite
the overall success of greybox fuzzing and the increasing importance
of WebAssembly, such a fuzzer currently does not exist.

1 [Serebryany 2017], https://google.github.io/oss-fuzz/
2 https://lcamtuf.coredump.cx/afl/

https://google.github.io/oss-fuzz/
https://lcamtuf.coredump.cx/afl/
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Figure 6.1: Overview of the main components of Fuzzm.

This chapter presents Fuzzm,3 the �rst binary-only greybox fuzzer
for WebAssembly. Its main components, shown in Figure 6.1, address
the following three technical challenges. First, unlike native programs,
WebAssembly lacks several built-in oracles that native fuzzers can rely
on for �nding suspicious program behavior. E.g., none of the current
compilers targeting WebAssembly add stack canaries [Cowan et al. 1998;
Prasad and Chiueh 2003], and due to WebAssembly’s linear memory,
over�ows from the stack to the heap remain unnoticed, unlike in native
code, where they would crash the program (Chapter 3). While tools like
AddressSanitizer [Serebryany et al. 2012] can instrument source code to
detect memory-related misbehavior, they do not apply to binaries. In-
stead, Fuzzm employs static instrumentation, adding stack and heap
canaries to the binaries in order to detect over- and under�ows on the
stack and heap at runtime. Besides fuzzing, the canaries are also useful
for retroactively hardening existing WebAssembly binaries.

Second, a binary-only fuzzer cannot rely on compiler-inserted code
to track coverage, which is what AFL and other fuzzers do [Böhme et
al. 2019; Mathis, Gopinath, Mera, et al. 2019]. Even though there are
dynamic instrumentation approaches for binaries, e.g., via QEMU or
DynInst, they are architecture-dependent, not applicable to WebAssem-
bly, and often su�er from high overheads. Our coverage instrumenta-
tion instead applies to unmodi�ed WebAssembly binaries and tracks
coverage e�ciently.

The �nal challenge is e�ciency, especially considering WebAssem-
bly programs are executed on a virtual machine. A naïve approach may

3 “Fuzzm” is a portmanteau word of “fuzzing” and “Wasm”.
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su�er from a prohibitively high program start-up time and expensive
communication between the VM and the fuzzer. Instead, we integrate
the WebAssembly VM that executes the target program with AFL’s
tried-and-tested input generation that runs natively. Here, WebAssem-
bly’s sandboxing can be an opportunity rather than a drawback: The
target application and AFL can reside in a single address space, without
the need for di�erent processes separating the two.

The result of addressing the above challenges is a practical, e�ec-
tive, and e�cient fuzzer for WebAssembly binaries. Our evaluation ap-
plies Fuzzm to 28 programs, of which ten are well-known programs
compiled from source code to WebAssembly, and 18 are WebAssem-
bly binaries without any source code from our WasmBench dataset
(Chapter 4). We �nd our approach to be e�ective, generating 1,232 in-
puts and triggering 40 unique crashes on average during 24 hours of
fuzzing. The majority of the triggered crashes are due to our canary
instrumentation. In terms of e�ciency, Fuzzm performs 321 program
executions per second, despite requiring only a binary as input and run-
ning the program in a VM. Finally, we show that the canaries inserted
by our instrumentation e�ectively prevent all three exploits against
vulnerable WebAssembly binaries we described in Section 3.4. Due to
the canaries’ low runtime overhead (1.05x and 1.06x, for stack and heap
canaries, respectively) the instrumentation serves, beyond fuzzing, as a
stand-alone hardening for existing, vulnerable WebAssembly binaries.

contributions In summary, this chapter contributes:

• The �rst binary-only fuzzer for WebAssembly programs.

• A static binary instrumentation that inserts stack and heap canaries,
which can be used to harden existing WebAssembly programs and as
an oracle in our fuzzer (Section 6.3).

• Integrating AFL’s input generation, a binary-only instrumentation
that provides compatible coverage information, and a WebAssembly
VM, into e�cient end-to-end fuzzing (Section 6.4).

• Empirical evidence that Fuzzm e�ectively generates inputs and �nds
crashes in real-world programs (Section 6.5).

• Empirical evidence that binaries hardened with our canary instru-
mentation run with low runtime overhead and e�ectively thwart pre-
viously published exploits (Section 6.5).
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We also make our source code, data, and all results publicly available
at https://github.com/fuzzm/fuzzm-project.

6.2 overview

Our approach consists of two main components, as shown in Figure 6.1.
First, a binary-only canary instrumentation (Section 6.3) that hardens
WebAssembly applications by adding stack and heap canaries. Second,
a binary-only fuzzer for WebAssembly (Section 6.4). The fuzzer inte-
grates several components into an e�ective and e�cient end-to-end
approach: a second instrumentation, which gathers coverage informa-
tion from WebAssembly binaries, a WebAssembly VM, and the input
generation abilities of the proven AFL tool. The remainder of this sec-
tion illustrates our approach with a motivating example; subsequent
sections �ll in the details.

example The program in Listing 6.1 su�ers from a textbook bu�er
over�ow on the stack (line 3) that can be exploited given the right
inputs (lines 15 and 3). Because of di�erences in compilers, system
libraries, and protection features, the vulnerability is not exploitable
when compiled to a native architecture, e.g., x86-64, but it can be ex-
ploited when compiled to WebAssembly (compare with Chapter 3). Fig-
ure 6.2a and b show the stack layout of the program when executed as
a native binary (compiled with GCC) and as a WebAssembly binary
(compiled with Emscripten). Because the arrays input1 and input2 are
stored in a di�erent order on the stack, an attacker over�owing input1

cannot change the program behavior in the native binary, but can do so
in WebAssembly. It is thus important to fuzz the WebAssembly binary,
and not only a native binary compiled from the same source.

canary instrumentation To detect executions that exploit vul-
nerabilities like in the above example, we present a binary-only instru-
mentation technique that adds protections in the form of stack and
heap canaries. The approach instruments every function in the binary
with code that inserts a canary onto the stack frame upon entry and
checks it upon function exit. Beyond over�ows in the stack, the instru-
mentation also detects memory violations on the heap by surrounding
heap chunks with canaries. Figure 6.2c shows the inserted canary on
the stack of the example program. An attack writing beyond the bu�er

https://github.com/fuzzm/fuzzm-project
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1 void vulnerable() {
2 char input1[8];
3 scanf("%16s", input1); // Buffer overflow!
4 char input2[8];
5 scanf("%8s", input2);
6 // More code...
7 }
8 int read_int() {
9 int i;

10 scanf("%d", &i);
11 return i;
12 }
13 int main(int argc, char** argv) {
14 char data[10] = "some data";
15 if (read_int() == 42) { // Input, figured out by fuzzer.
16 vulnerable();
17 }
18 if (strcmp(data, "some data") == 0) {
19 puts("equal");
20 } else {
21 puts("not equal");
22 }
23 }

Listing 6.1: Example program with a memory vulnerability (simpli�ed).

will overwrite the canary, which the instrumented binary will detect
and abort execution.

The canary instrumentation serves two purposes, marked with A)
and B) in Figure 6.1. A) The primary purpose explored in this chapter
is as an oracle during fuzz-testing. If a fuzzer successfully generates
an input that causes an over�ow (e.g., of input1 in the example), it
might remain unnoticed, unless the over�ow causes a crash. Analogous
to dynamic checks for memory corruptions in native programs [Di-
nesh et al. 2020; Prasad and Chiueh 2003; Robertson et al. 2003], our
stack and heap canary instrumentation provides a precise test oracle
that warns about memory corruptions observed during execution. B)
Beyond fuzzing, our instrumentation also serves as a hardening tech-
nique for binaries running in production. The inserted code mitigates
exploits by detecting over�ows at runtime, terminating the program,
and hence preventing exploitation. As we show in our evaluation, this
protection comes with a low runtime overhead and be can be applied
to large, real-world binaries compiled from C, C++, and Rust.
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Figure 6.2: Stack layouts of the example program from Listing 6.1.

fuzzing webassembly The second main component of our ap-
proach is the actual fuzzer. We use a greybox fuzzing approach based on
the widely used AFL fuzzer and its proven input generation [Böhme et
al. 2019; Klees et al. 2018]. Starting from some seed input(s), our fuzzer
repeatedly executes the program, and the program gathers coverage
feedback, which is used to mutate inputs until triggering a crash. In
the example program, the fuzzer’s input generation eventually �gures
out to start the input with "42" (line 15) to explore more behavior in
function vulnerable. However, in said function, native AFL fails to de-
tect a vulnerability due to the di�erent stack layouts between the na-
tive and WebAssembly binaries, whereas Fuzzm �nds a crashing input
after few minutes of fuzzing.

Applying AFL-style greybox fuzzing to WebAssembly is non-trivial
for two reasons. First, the fuzzer requires coverage information, which
native AFL obtains by inserting code when compiling the program
from source. However, we want to fuzz WebAssembly binaries without
requiring access to the source code. We hence present a binary-only
instrumentation technique to gather AFL-compatible coverage infor-
mation from WebAssembly binaries. Second, to be practical, fuzzers
must execute the program-under-test hundreds of times per second.
We present several technical contributions that e�ciently integrate a
WebAssembly VM that runs the program with native input generation
of AFL in the same process. More details of both points are given in
Section 6.4.
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Figure 6.3: Control-�ow graphs of a WebAssembly function before and
after the instrumentation. The rectangles represent subgraphs.

6.3 canary instrumentation

To detect memory violations, we present a reliable static instrumen-
tation that inserts stack and heap canaries into WebAssembly binaries.
Similar to native programs [Ha et al. 2018; Nikiforakis et al. 2013; Prasad
and Chiueh 2003; Robertson et al. 2003], the basic idea is to surround
memory regions with a special value, called the canary, and to check
whether this value gets overwritten. Our approach di�ers from prior
work in four ways. First, we are the �rst to present a canary-based pro-
tection against bu�er over�ows in WebAssembly at all. Current com-
pilers, e.g., Clang and Emscripten based on LLVM, do not implement
canaries, so many already existing WebAssembly binaries are poten-
tially vulnerable. Second, in contrast to, e.g., compiler-inserted canaries
or the popular AddressSanitizer [Serebryany et al. 2012], our approach
does not require source code but instruments WebAssembly binaries
directly. This allows us to retroactively harden existing binaries. Fi-
nally, instrumenting WebAssembly provides novel challenges, e.g., due
to structured control-�ow, multiple returns, and relative branch target
labels. The implementation of the static instrumentation builds on the
WebAssembly binary parser and AST libraries we have developed for
our Wasabi project (Chapter 5).
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Algorithm 6.1: Stack canary instrumentation. The ++ operator denotes
concatenation.

1: procedure InstrumentFunction(body)
2: canary← eight randomly generated bytes
3: body← InjectCanary(canary) ++ body
4: body← block ++ body ++ end ⊲ Wrap original body
5: depth← 0
6: for instr in body do
7: if OpensBlock(instr) then ⊲ Track block depth
8: depth← depth + 1
9: else if ClosesBlock(instr) then

10: depth← depth − 1
11: if instr = return then ⊲ Redirect and replace returns
12: instr← br (depth − 1)
13: body← body ++ ValidateCanary(canary)

6.3.1 Stack Canaries

To detect bu�er over�ows that write beyond the current stack frame,
Fuzzm performs three transformations on each function in a binary,
as illustrated in Figure 6.3. First, we insert a preamble that injects a
random canary value onto the stack in linear memory (�rst green box
in Figure 6.3b). Second, we need to make sure that the canary is checked
when returning from the function. For that, we wrap the function body
in a new block and rewrite all original return instructions to branches
to the end of the wrapped block (middle box), giving the code a single
unique exit point. Finally, we append a canary validation postamble to
the function (second green box).

Algorithm 6.1 presents the instrumentation of a given function in
more detail. Line 2 generates a random 8-byte canary value. Line 3
prepends the injection code to the function, which writes the canary
at runtime into the stack in linear memory. For brevity, the code of
InjectCanary is omitted here, but it decrements the stack pointer
by 16 bytes (due to stack alignment) and then writes the random canary
to that address with an i64.store instruction. Because WebAssembly
does not have registers, unlike native code, the stack pointer is stored
in a global variable, which needs to be statically identi�ed. For WASI
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Figure 6.4: Heap chunks, before and after instrumentation.

applications, it is the �rst global variable; otherwise, heuristics to iden-
tify the stack pointer can be used (Chapter 4).

WebAssembly functions frequently return from multiple locations in
their body, which raises the question where to insert code to validate
the canary. Unlike in native code, there is no single function epilogue
that clears the stack and returns to the caller. One possible approach is
to separately instrument every return instruction with a copy of the
validation code, but this would increase code size considerably. Instead,
we rewrite all original return instructions to branch to a single location
and then insert the validation code there. Thus, the entire function is
wrapped into a new WebAssembly block (line 4 of Algorithm 6.1). Then,
each return instruction in the function body is replaced with a branch
to the end of that new block (lines 6–12), keeping the semantics of the
original code. Because WebAssembly has relative branch labels instead
of absolute code addresses, the depth variable (line 5) is needed to keep
track of the number of nested blocks around the current instruction, to
emit the correct branch target.

Finally, line 13 appends the postamble ValidateCanary for vali-
dating the canary before the function returns. It loads the canary from
memory and compares it against the known, correct canary value. If
they di�er, an unreachable instruction is executed, which aborts the
program and thwarts potential exploits. If the canary was intact, the
stack pointer is adjusted by adding 16 bytes, restoring the stack layout
of the uninstrumented binary.

6.3.2 Heap Canaries

Fuzzm also detects and prevents memory violations on the heap. To
illustrate the problem, Figure 6.4a shows the typical layout of a heap
chunk, i.e., a region of dynamically allocated memory returned by func-
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Algorithm 6.2: Instrumentation of heap allocation functions.

1: procedure InstrumentAllocFunction(f)
2: localreq_size ← AddFreshLocal(f)
3: f.body← ⊲ Insert preamble
4: SaveAllocRequestSize(f, localreq_size) ++
5: IncreaseAllocSize(f, localreq_size) ++ f.body
6: localdata_ptr ← AddFreshLocal(f)
7: f.body← f.body ++ ⊲ Insert postamble
8: SaveDataPointer(localdata_ptr) ++
9: WriteSizeAndUnderflowCanary(localreq_size, localdata_ptr) ++

10: WriteOverflowCanary(localreq_size, localdata_ptr) ++
11: AdjustDataPointer(localdata_ptr)

tions like malloc. The payload is where the user will read and write data
to. The metadata precedes or follows the payload and is used for book-
keeping by the allocator. An attack that over- or under�ows a bu�er in
the payload and that writes into adjacent metadata can yield a danger-
ous arbitrary write primitive [Anonymous 2001; Kaempf 2001].

To detect such violations on the heap, Fuzzm instruments heap al-
location and deallocation functions in the binary. Our instrumentation
inserts canary values before and after the payload, as illustrated by
Figure 6.4b, enabling us to detect both over�ows and under�ows. The
canaries are inserted into the heap chunk by instrumented versions
of allocation functions (Section 6.3.2.1) and checked by instrumented
versions of deallocation functions (Section 6.3.2.2).

6.3.2.1 Insert Canaries on Heap Allocation

Our instrumentation adds code to allocation functions from the C stan-
dard library, i.e., malloc, calloc, and realloc. Other functions that al-
locate by calling the low-level libc functions in turn thus pro�t from
our protection as well. The instrumentation inserts code into allocation
functions in two places: a preamble in the beginning and a postamble at
the end, as outlined in Algorithm 6.2. The added code has three high-
level goals. First, the allocation size needs to be increased to �t the
canaries (line 5). Second, the canary values must be written to memory
(lines 9 and 10). Third, the data pointer returned by the allocator needs
to be adjusted before passing it to the user, such that it points to the
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now shifted payload (line 11). Additionally, we add two new locals to
the function (lines 2 and 6) to save data (lines 4 and 8) used later by the
inserted code. Our canary code is interposed between the original allo-
cator and the client code requesting the allocation, and it is transparent
to both. From the allocator’s point of view, the payload is the whole re-
gion after the metadata in Figure 6.4b, including the inserted canaries.
For the client code requesting the allocation, the payload is only the
region between the canaries, matching the originally requested size.

In the preamble, we retrieve the originally requested allocation size,
save it to a local for later (line 4), and increase it by 20 bytes (line 5). The
additional 20 bytes make space for two 8-byte canaries and a 4-byte size
�eld. The latter is required for the checking code (Section 6.3.2.2). Af-
ter the preamble, the original allocator code performs the regular mem-
ory allocation routine and produces a data pointer to the beginning of
the freshly allocated memory. Then follows our inserted postamble. It
saves the data pointer to a local (line 8). Starting at this pointer, the
inserted code writes the chunk size and under�ow canary (line 9), i.e.,
before the payload. Then, line 10 writes the over�ow canary after the
payload, i.e., to data_ptr + size + 12. Finally, the data pointer is adjusted
to point past the under�ow canary (line 11). This pointer is �nally re-
turned to the calling code. The result of this instrumentation is that
memory allocation functions create chunks as shown in Figure 6.4b.

6.3.2.2 Check Canaries on Heap Deallocation

Fuzzm checks whether the heap canaries are valid whenever a heap
chunk gets deallocated. Similar to allocation functions, we currently
instrument libc’s free and realloc, which are also at the basis, e.g.,
of C++ delete. The validation code is inserted in the beginning of the
deallocation functions, as corrupted allocator metadata could lead to
an exploit if not checked at this stage. The validation code loads and
checks both canaries around the allocation payload, aborting the pro-
gram with an unreachable instruction if they have been altered.

When to check the heap canaries is a trade-o� between performance,
complexity of the instrumentation, and the likelihood of catching bu�er
over�ows. Fuzzm performs this check during deallocation, which is in-
expensive, as every canary is checked at most once, but has the disad-
vantage of not catching over�ows in chunks that are never deallocated.
Others have proposed more aggressive techniques that check canaries
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at every memory read or write [Serebryany et al. 2012] or validate ca-
naries at every syscall [Nikiforakis et al. 2013]. While these approaches
may detect more attacks in production, they also impose a larger run-
time overhead, which makes them less suited for binary hardening and
e�cient fuzzing.

6.4 binary-only fuzzer

In this section we show the other components of our �rst binary-only
fuzzer for WebAssembly. We take a greybox fuzzing approach and build
upon the popular AFL fuzzer, reusing its highly e�ective input genera-
tion. Because AFL usually targets programs with source code available
and does not support WebAssembly, there are two key challenges to
address. The �rst challenge is gathering compatible coverage informa-
tion during the execution of a WebAssembly program (Section 6.4.1).
The second challenge is how to integrate execution of the program in
a WebAssembly VM with AFL running natively, in a way that allows
for performing hundreds of program executions per second, which is
the level of e�ciency AFL provides for natively compiled code (Sec-
tion 6.4.2).

6.4.1 Coverage Instrumentation

Greybox fuzzing is e�ective because it relies on lightweight feedback
during program execution to steer the fuzzer. To collect that feedback,
native AFL compiles applications from source, inserting code to track
an approximate form of path coverage [Böhme et al. 2019], which is
stored into a trace bits array. Unlike native AFL, we fuzz WebAssembly
binaries without access to their source code, and hence, cannot instru-
ment during compilation. AFL also o�ers a QEMU mode for dynamic
binary instrumentation, but it comes with a high performance over-
head and naturally is architecture-speci�c, o�ering no WebAssembly
support. Instead, Fuzzm gathers coverage via static binary instrumen-
tation that inserts code at all branches to extract AFL-compatible cov-
erage information.

As a prerequisite for instrumentation, the approach determines all
branches. This is non-trivial because of WebAssembly’s structured con-
trol �ow and relative branch target labels. Algorithm 6.3 traverses each
function of a binary and marks instructions that transfer control-�ow.
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Algorithm 6.3: Insertion of AFL coverage instrumentation.

1: procedure InstrumentApproximateCoverage(f)
2: depth← 0
3: targets← {}
4: for instr in f.body do
5: if instr ∈ {block, if, else, loop} then
6: if instr ∈ {block, if, loop} then
7: depth← depth + 1
8: if instr ∈ {if, else, loop} then
9: mark(instr)

10: else if instr = br_if n then
11: targets← targets ∪ {depth − n}
12: mark(instr)
13: else if instr = br_table(jmp_targets) then
14: targets← targets ∪⋃

t∈jmp_targets{t − n}
15: else if instr = end then
16: if depth ∈ targets then
17: mark(instr)
18: targets← targets \ {depth}
19: depth← depth − 1
20: mark(f.body[0])

This includes br_if (line 12), but also if, else and loop blocks (line 9)
since they are structured control �ow constructs. Furthermore, the al-
gorithm keeps track of the block nesting depth, i.e., depth is incre-
mented at block, if and loop instructions (line 7) and decremented at
an end instruction (line 19). Keeping track of the depth is necessary to
resolve relative branch labels to concrete, unambiguous targets. When-
ever the algorithm encounters a conditional branch (either br_if on
line 10 or br_table on line 13), it adds the target depth of the branch
instruction to the targets set. At every end instruction, the algorithm
then checks whether the depth of that end instruction is in the targets
set (line 15). In case it is present, the end is a target of some branch,
and is therefore also marked for instrumentation (line 17). In addition
to the instructions marked by Algorithm 6.3, Fuzzm also marks the be-
ginning of every function (line 20) since an indirect function call also
represents a branch.
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Given the branching points identi�ed by Algorithm 6.3, Fuzzm in-
struments each of them. It adapts the coverage mechanism described
in the AFL documentation4 to WebAssembly. Every branch target is
assigned a random identi�er. Whenever a branch is taken, the instru-
mentation computes an index that combines the identi�er of the cur-
rent branch, <CUR_LOCATION>, and the identi�er of the previous branch,
<PREV_LOCATION>. The code then increments the element of the trace
bits array corresponding to that index. To initialize the trace bits array,
Fuzzm also injects code into the _start function of the binary, which
is the program’s entry point.

6.4.2 Integrating a WebAssembly VM and AFL

AFL for native programs is heavily optimized towards performing as
many executions of the target program as possible. In the following we
present techniques that allow Fuzzm to achieve a similar level of e�-
ciency. Our implementation targets WebAssembly binaries using the
WASI syscall interface, i.e., applications running on a compliant VM,
such as Wasmer or Wasmtime (Section 2.3)

avoiding vm restarts With the fuzzed program running on a
VM, one possible approach is to start a new instance of the VM for
each run of the target program. However, doing so easily results in
more time spent on starting the VM and compiling the WebAssembly
bytecode to native code than on running the target program. Instead,
Fuzzm starts the VM once, lets the VM precompile the target WebAs-
sembly binary, and then reuses both throughout the fuzzing process.
Fuzzm uses the Wasmtime C API5 to separately compile and run Web-
Assembly modules. For every newly generated input, the fuzzer instan-
tiates the WebAssembly module that was already compiled to native
code and calls the exported _start function.

accessing the trace bits array To generate new inputs, the
fuzzer needs to access coverage information stored in the trace bits ar-
ray. The native version of AFL starts the target program as a subprocess
and accesses the trace bits array via shared memory. Instead, Fuzzm
exploits the fact that the VM sandbox allows for the target program
and AFL’s own code to share a single address space. Our approach in-

4 https://lcamtuf.coredump.cx/afl/technical_details.txt
5 https://docs.wasmtime.dev/c-api/

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://docs.wasmtime.dev/c-api/
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serts an accessor function into the binary that returns a pointer to the
trace bits array in the WebAssembly memory of the target program. Af-
ter each execution of the program, Fuzzm calls the accessor function,
extracts the trace bits, and passes them to AFL.

detecting crashes The native version of AFL detects crashes by
looking for fatal signals (sigsegv, sigkill, sigabrt) in the target
program. However, WASI does not support signals, so Fuzzm uses the
trap system of WebAssembly to determine when the target program
crashes. To this end, the oracles that Fuzzm inserts (Section 6.3) trig-
ger an unreachable trap when they detect an over�ow or under�ow.
In addition, WebAssembly has other runtime errors that also indicate
faulty behavior, e.g., the type checking of indirect calls (2.2). When the
_start function terminates, Fuzzm checks if the termination was trig-
gered by a trap, and in that case, marks it as a crash.

killing long-running executions Randomly generated in-
puts may trigger long-running or even non-terminating executions. To
prevent those from slowing down overall fuzzing, native AFL runs the
fuzzed program in a separate process, which is killed after a timeout.
However, since the WebAssembly VM and the other parts of the fuzzer
are running in the same process, Fuzzm implements two mechanisms
to stop long-running executions. First, it uses a “soft killing” mecha-
nism based on a separate thread that interrupts the thread of the target
program after a dynamically set timeout. Second, for programs that do
not react to the interrupt, a second “hard killing” mechanism restarts
the entire VM after a longer timeout.

6.5 evaluation

We evaluate Fuzzm along the two use-cases presented in Section 6.2.
First, end-to-end fuzzing of WebAssembly binaries:

RQ1 E�ectiveness: How e�ective is Fuzzm at covering paths and �nd-
ing crashes?

RQ2 Robustness: How robust is the instrumentation when applied to
real-world binaries?

RQ3 E�ciency: How e�cient is fuzzing with Fuzzm?

Second, hardening binaries for production through canaries:
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RQ4 E�ectiveness: How e�ective are the inserted canaries at prevent-
ing previously demonstrated exploits?

RQ5 E�ciency: How much overhead do the canaries impose?
For reproducibility, future research, and practicioners, we make our

source code, data, and all experimental results available at https://

github.com/fuzzm/fuzzm-project.

6.5.1 Experimental Setup

benchmarks We use three sets of benchmarks (Table 6.1). Bench-
marks 1 to 7 are real-world applications and libraries, compiled to Web-
Assembly with WASI. The selected versions of those programs su�er
from known memory vulnerabilities, which a fuzzer might help to un-
cover and �x. We select these applications from https://www.exploit-

db.com/ and https://www.rapid7.com/db/ and con�rmed that each
vulnerability could be exploited after compilation to WebAssembly.

Benchmarks 8 to 10 are from the LAVA-M suite [Dolan-Gavitt et al.
2016]. We omit the who program since it reads the list of mounted �le
systems, which is not yet supported by WASI. AFL, and by extension
also Fuzzm, is known to perform poorly on LAVA-M as the fuzzer does
not handle the multi-byte constraints of LAVA-M bugs well [Rawat et
al. 2017]. Because LAVA-M has been criticized for not being represen-
tative of real bugs [Klees et al. 2018], we would have liked to instead
evaluate against the more modern Magma benchmark suite [Hazimeh
et al. 2020]. However, all seven Magma programs use features not yet
supported by WASI, such as networking, threads, and long jumps.

Benchmarks 11 to 28 are real-world WebAssembly binaries, which
we took from our WasmBench dataset (Chapter 4). We select 18 bina-
ries that run without error (before instrumentation) in the Wasmtime
VM with WASI. Among them are large applications, such as SQLite
and Clang compiled to WebAssembly, but also several smaller binaries,
such as a formatter (canonicaljson), a template engine (handlebars-cli),
and an interpreter (b�).

compilation We compile the source code from the �rst and sec-
ond set using a version of Clang that targets WebAssembly6 and then
instrument the binaries as described in Sections 6.3 and 6.4. For com-
paring against native AFL, we also compile the benchmarks with AFL’s
6 https://github.com/WebAssembly/wasi-sdk

https://github.com/fuzzm/fuzzm-project
https://github.com/fuzzm/fuzzm-project
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.rapid7.com/db/
https://github.com/WebAssembly/wasi-sdk
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GCC wrapper. Since AFL’s instrumentation is applied during compila-
tion, this is not completely true to our scenario where source code is not
available and binaries are compiled for production. To level the ground,
we do not use AddressSanitizer or any other oracle that requires source
code, neither for Fuzzm nor AFL. An alternative baseline would be the
QEMU mode of AFL, which uses dynamic instrumentation, but since
it is much slower than normal AFL, it would give Fuzzm an unfair ad-
vantage. For the third benchmark set, we do not have any source code,
which highlights the need for a binary-only fuzzer such as Fuzzm.

repetitions and system configuration We fuzz each
benchmark �ve times for 24 hours, both with Fuzzm and AFL [Klees
et al. 2018], and report the mean across repetitions and the 95% con�-
dence intervals. All experiments are performed on two machines, each
with two Intel Xeon 12-core 24-thread CPUs running at 2.2 GHz, using
256 GB of system memory, using Ubuntu 18.04 LTS and AFL 2.57b.

6.5.2 RQ1: E�ectiveness of Fuzzm

We evaluate the end-to-end e�ectiveness of fuzzing WebAssembly bi-
naries with Fuzzm by measuring how many inputs that cover new
paths are generated, how many unique crashes are triggered, and if the
canary instrumentation helps in �nding those crashes. Table 6.1 gives
the results, where the numbers for Fuzzm are presented in the left
block. What AFL reports as explored “paths” (e.g., in its status screen)
is de�ned as the total number of added inputs to the test case queue. A
new input is only added to the queue if it covers a new path as per AFL’s
coverage metric.7 To avoid confusion, we report this number in the
“Generated Inputs” column, not as paths. Unique crashes are counted
using AFL’s notion of uniqueness, i.e., two crashes are merged if they
are found in executions with the same coverage map. Di�erent crashes
as per this metric may sometimes have the same root cause [Klees et
al. 2018]. Finally, the “Execs/sec” columns show the average number of
executions of the benchmark program per second.

We �nd that Fuzzm successfully generates many hundreds of in-
puts that cover new paths for the programs, on average 1232 inputs
per benchmark after 24 hours of fuzzing. We see that this works even
for complex programs such as �ac (benchmark set 1) or sqlite (set 3). For

7 https://github.com/google/AFL/blob/master/README.md

https://github.com/google/AFL/blob/master/README.md
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Table 6.1: Benchmark sets and fuzzing results (5× 24 hours). The reported numbers are mean and 95% con�dence intervals.

Fuzzm (WebAssembly binaries) AFL (native, built from source)

# Benchmark Generated
Inputs

Crashes, of those: caused by Canaries
Execs/sec Generated

Inputs Crashes Execs/sec
Total Stack Can. Heap Can.

Benchmark set 1 – Real-world applications and libraries:
1 abc2mtex 1678.6± 22.5 267.9± 6.6 224.5± 5.5 4.2± 1.6 359.4± 42.4 2999.2± 82.6 820.1± 63.2 879.6± 212.1
2 flac 607.5± 11.5 0.0± 0.0 0.0± 0.0 0.0± 0.0 497.0± 7.1 1617.1± 75.1 0.0± 0.0 1228.1± 391.3
3 jbig2dec 2199.1± 13.8 0.1± 0.2 0.0± 0.0 0.0± 0.0 66.2± 51.6 3330.1± 49.8 0.0± 0.0 437.7± 264.8
4 libpng 727.0± 10.4 96.1± 4.0 0.0± 0.0 77.2± 3.8 430.9± 67.6 1123.4± 25.3 176.4± 2.8 692.5± 481.6
5 libtiff 860.3± 9.1 0.0± 0.0 0.0± 0.0 0.0± 0.0 868.5± 64.3 2542.5± 33.6 0.0± 0.0 953.7± 467.8
6 openjpeg 5322.2± 3611.0 90.3± 39.3 7.7± 4.5 8.6± 10.4 457.3± 242.8 1779.7± 39.8 90.7± 3.4 605.4± 435.4
7 pdfresurrect 840.1± 207.0 54.5± 8.4 15.1± 3.4 17.2± 5.4 228.1± 194.1 1011.0± 226.3 129.9± 29.2 701.5± 369.2
Benchmark set 2 – From LAVA-M [Dolan-Gavitt et al. 2016]:
8 base64 200.6± 7.2 34.4± 1.5 0.0± 0.0 0.0± 0.0 225.8± 83.7 355.8± 29.1 0.1± 0.2 514.3± 276.6
9 md5sum 395.2± 20.6 0.0± 0.0 0.0± 0.0 0.0± 0.0 324.6± 202.7 317.9± 8.9 0.0± 0.0 202.4± 60.7

10 uniq 213.1± 22.8 0.0± 0.0 0.0± 0.0 0.0± 0.0 678.2± 109.6 113.0± 3.7 0.3± 0.4 415.0± 337.5

Average (sets 1 & 2) 1304.4 54.3 24.7 10.7 413.6 1518.9 121.7 663.0
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Table 6.1 continued.

Fuzzm (WebAssembly binaries) AFL (native, built from source)

# Benchmark Generated
Inputs

Crashes, of those: caused by Canaries
Execs/sec Generated

Inputs Crashes Execs/sec
Total Stack Can. Heap Can.

Benchmark set 3 – Real-world WebAssembly binaries from WasmBench:
11 bf 271.4± 27.5 0.0± 0.0 0.0± 0.0 0.0± 0.0 28.6± 7.4

N/A
(As those samples are binary-only

WebAssembly programs, there is no
native counterpart to fuzz with AFL.)

12 bfi 2158.0± 108.8 97.8± 26.1 0.0± 0.0 30.8± 12.5 286.4± 40.1
13 canonicaljson 357.4± 15.8 180.4± 6.9 0.0± 0.0 0.0± 0.0 428.2± 193.4
14 clang 6.0± 0.6 0.0± 0.0 0.0± 0.0 0.0± 0.0 36.8± 0.7
15 colcrt 231.0± 7.6 0.0± 0.0 0.0± 0.0 0.0± 0.0 83.6± 50.3
16 handlebars-cli 882.2± 69.5 39.4± 0.7 0.0± 0.0 39.4± 0.7 222.0± 136.8
17 hq9_plus_rs 227.0± 15.5 42.8± 0.9 0.0± 0.0 42.8± 0.9 111.0± 42.0
18 jq 1.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 334.0± 7.3
19 libxml2 177.8± 5.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 70.0± 1.5
20 qjs 9640.0± 96.0 140.4± 61.4 3.4± 3.0 11.6± 8.6 387.0± 20.0
21 qr2text 1.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 84.6± 0.4
22 rev 161.4± 6.1 0.0± 0.0 0.0± 0.0 0.0± 0.0 140.4± 20.1
23 save 23.2± 0.7 0.0± 0.0 0.0± 0.0 0.0± 0.0 46.4± 1.2
24 sqlite 4284.2± 738.3 2.4± 4.2 0.0± 0.0 0.0± 0.0 359.4± 116.5
25 viu 12.4± 1.8 0.0± 0.0 0.0± 0.0 0.0± 0.0 707.2± 7.6
26 wasi-example 213.4± 7.1 50.2± 0.9 0.0± 0.0 0.0± 0.0 764.4± 81.8
27 wasm-interface 5.2± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 622.2± 10.3
28 zxing_barcode 2799.2± 236.2 32.2± 5.6 0.0± 0.0 17.4± 5.2 131.4± 62.2

Average (all sets) 1232.0 40.3 9.0 8.9 320.7
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benchmark sets one and two, where the fuzzed programs are known,
we provide the fuzzer with seed inputs. For set three, we only provided
an empty �le as seed input, which could explain the lower average
number of generated new inputs. In terms of crashes, Fuzzm �nds
40.3 crashes per benchmark on average. For libpng and pdfresurrect,
Fuzzm generates crashing inputs that produce the exact stack trace of
the native proof-of-concept exploits, con�rming that Fuzzm can �nd
real bugs in WebAssembly binaries.

To better understand how Fuzzm exercises a program over a 24-hour
period of fuzzing, Figure 6.5 shows the number of generated inputs that
cover new paths over time, for four programs. As the plots for found
crashes strongly correlate with them, we omit the former. As is typi-
cal for fuzzers, the majority of behaviors are detected early on, usually
within the �rst couple of hours (6.5a/b/c). Then, the number of new
inputs and crashes often saturates, especially for the LAVA-M bench-
marks (b). For some benchmarks, e.g., qjs, Fuzzm still �nds new inputs
when given more time (d). The con�dence intervals are small, except
for openjpeg (a) and pdfresurrect, where the results vary considerably
across runs. Overall, these �ndings are consistent with previous work,
and show that running a fuzzer multiple times is important to obtain
statistically meaningful results [Klees et al. 2018].

comparison As Fuzzm is the �rst binary-only fuzzer for WebAs-
sembly, we cannot directly compare to any baseline. However, to put
the number of generated inputs and crashes into perspective, we also
present results for native AFL on the right side of Table 6.1. This is
only meant as a rough frame of reference, as a fair comparison is not
possible for several reasons. First, Fuzzm requires only the binary as in-
put, whereas AFL applies its instrumentation during compilation from
source. Second, our notion of branches may di�er from branches con-
sidered by AFL due to di�erent compilers and their target-dependent
optimizations. Third, unlike in native binaries, all libraries (including
libc) are statically linked in WebAssembly, which increases the amount
of code Fuzzm has to instrument and fuzz. Fourth, the number of gen-
erated inputs naturally depends on the execution speed, which is in
principle lower on WebAssembly compared to native (Section 6.5.4). Fi-
nally, benchmark set three is only available as WebAssembly binaries
without source code, which is why we cannot compare against AFL for
these benchmarks.
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(a) openjpeg. (b) base64.

(c) sqlite. (d) qjs.

Figure 6.5: Average number of generated inputs covering new paths
(y-axis) over 24 hours of fuzzing (x-axis), with 95% con�dence intervals.

From the data on benchmark sets one and two, we can see that
Fuzzm generates, on average, a number of inputs similar to AFL on
native programs (1304 vs. 1519). In terms of crashes, AFL triggers 122 on
average, which is roughly twice as many as Fuzzm’s 54. One outlier is
base64 where Fuzzm triggers 34 unique crashes but AFL triggers only
one crash in one of the performed runs. The 34 WebAssembly crashes
are triggered by a built-in sanity check of the executing VM, which is
not present in native binaries and explains why these crashes are not
detected by AFL. For programs where Fuzzm does not �nd any crashes
(e.g., �ac), AFL does not either.

For the LAVA-M benchmarks, both Fuzzm and AFL fail to trigger
any of the bugs injected by the LAVA tool. This is surprising since prior
work that also compares with AFL report at least some bugs detected
for uniq and also sometimes for base64 [P. Chen and H. Chen 2018; B.
Zhang et al. 2017]. Manually investigating several LAVA-M bugs shows
that a crash depends on the memory allocator allocating a new chunk
at the exact location of some previously freed chunk. We attribute the
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fact that neither Fuzzm nor AFL �nds these bugs to di�erences in (ver-
sions of) the used memory allocator (compare with Section 4.3.4.2) and
to di�erences across versions of AFL.

effectiveness of canaries Besides being the �rst approach for
fuzzing WebAssembly binaries, Fuzzm contributes canary-based ora-
cles to detect stack and heap over- and under�ows. We measure how
much these oracles contribute to the crashes detected by Fuzzm by dis-
tinguishing crashes caused by the oracles from other crashes. The three
“Crashes” columns of Table 6.1 show the results. The stack and heap
canaries are responsible for 22.2% and 22.0% of all detected crashes, re-
spectively, on all benchmarks, and 45.5% and 19.7% on benchmark sets
one and two, a signi�cant proportion of all crashes.

Summary: Applied to well-known applications, libraries, and real-
world WebAssembly binaries, Fuzzm triggers an average of 40 unique
crashes and generates 1,232 inputs within 24 hours of fuzzing, which
are similar results as AFL applied to native programs. Our canary-based
oracles detect about half of all detected crashes, and hence, contribute
signi�cantly to the e�ectiveness of Fuzzm.

6.5.3 RQ2: Robustness of Instrumentation

Our instrumentation should not a�ect the semantics of the program,
except in the presence of over�ows, where the canaries should termi-
nate the program. To validate the robustness of Fuzzm’s instrumenta-
tion, we compare the output of the non-instrumented against the in-
strumented versions of the benchmarks. For each benchmark in the
�rst two sets, we collect at least ten di�erent inputs, totaling 138 test
cases (Table 6.3). We sample these inputs from di�erent websites8, and
for programs where we could not �nd su�ciently many examples on-
line, e.g., pal2rgb, we generate inputs by, e.g., converting images to the
pal format. As we do not have source code or documentation for bench-
mark set three, we do not generate test inputs for those programs. For
the binaries and test inputs shown in Table 6.3, we verify that the out-
puts produced by the instrumented binaries are equivalent to the out-
puts produced by the uninstrumented binaries for all 138 test cases. As
additional evidence for the robustness of our instrumentation, we �nd

8 E.g., https://filesamples.com/.

https://filesamples.com/
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that all binaries we instrumented pass built-in WebAssembly valida-
tion, which performs, e.g., type-checking of instructions and functions.

Summary: Test runs of the benchmarks and the static validation ap-
plied to each WebAssembly module before its execution show that the
binary instrumentation applied by Fuzzm preserves the semantics of
the original program.

6.5.4 RQ3: E�ciency of End-to-End Fuzzing

E�ective fuzzing requires many repeated executions of the target pro-
gram in limited time. In Fuzzm, fast execution is even more challeng-
ing due to WebAssembly being a bytecode language and applying our
instrumentation at the binary level.

Table 6.1 lists the average program executions per second during
fuzzing in the column “Execs/sec”. With an average speed of 321 ex-
ecutions per second, Fuzzm is able to quickly explore many paths. As
already described in Section 6.5.2, comparisons between Fuzzm and
AFL are possible in broad strokes only. This is especially true for per-
formance, because even uninstrumented WebAssembly binaries can ex-
ecute on average up to 50% slower than native code [Jangda et al. 2019].
Despite this, on benchmark sets one and two, Fuzzm achieves 414 ex-
ecutions per second on average, which is only 37% slower compared
with 663 native executions per second in AFL. We believe this is fast
enough for practical fuzzing of WebAssembly binaries and respectable,
given execution of the target program in a VM. Finally, our approach
will also bene�t from potential improvements to the young Wasmtime
VM in the future.

Besides the program execution in a VM, other sources of slowdown
in Fuzzm can come from the applied binary instrumentation. To eval-
uate the runtime overhead of the added code, we run the benchmark
programs with the test inputs used for RQ2, and compare the runtime
of the original, uninstrumented binaries against the runtime when the
binaries were instrumented. The results are shown in the right part
of Table 6.3. On average over 25 program executions, the coverage
instrumentation imposes a runtime overhead of 1.46x over the unin-
strumented binary. We will detail the overhead of the canaries in Sec-
tion 6.5.6. The overhead of the coverage instrumentation is generally
higher than for the canaries, because for every branch in the program it
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Table 6.3: Robustness and runtime overhead of instrumented binaries (mean over 25 repetitions, 95% con�dence intervals).

# Benchmark Test
Inputs

Execution Time,
Uninstrumented

Execution Time, Relative to Uninstrumented Binary

Coverage Stack Canaries Heap Canaries All Canaries Cov. + Can.

1 abc2mtex 30 815 ms 1.38 ± 0.03 1.02 ± 0.01 1.02 ± 0.01 1.06 ± 0.01 1.38 ± 0.04
2 flac 10 2,449 ms 1.42 ± 0.01 1.02 ± 0.01 1.00 ± 0.01 1.02 ± 0.01 1.48 ± 0.02
3 jbig2dec 28 4,742 ms 2.05 ± 0.01 1.22 ± 0.01 1.00 ± 0.00 1.22 ± 0.01 2.24 ± 0.01
4 libpng 10 3,480 ms 1.57 ± 0.02 1.03 ± 0.01 1.00 ± 0.01 1.02 ± 0.01 1.58 ± 0.02
5 libtiff 10 899 ms 1.30 ± 0.03 1.13 ± 0.01 1.11 ± 0.01 1.14 ± 0.01 1.40 ± 0.03
6 openjpeg 10 4,750 ms 1.77 ± 0.02 1.05 ± 0.01 1.00 ± 0.01 1.06 ± 0.01 1.84 ± 0.02
7 pdfresurrect 10 2,894 ms 1.16 ± 0.02 1.06 ± 0.01 1.31 ± 0.01 1.35 ± 0.01 1.53 ± 0.02
8 base64 10 256 ms 1.32 ± 0.10 1.02 ± 0.02 0.99 ± 0.01 1.03 ± 0.02 1.31 ± 0.09
9 md5sum 10 272 ms 1.33 ± 0.09 1.03 ± 0.03 1.00 ± 0.01 1.05 ± 0.02 1.30 ± 0.09

10 uniq 10 260 ms 1.34 ± 0.09 1.04 ± 0.03 1.02 ± 0.01 1.11 ± 0.09 1.39 ± 0.10

Average 2,082 ms 1.46 ± 0.04 1.06 ± 0.02 1.05 ± 0.01 1.11 ± 0.02 1.54 ± 0.04
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adds 13 instructions. More e�cient implementations, e.g., by predicting
some branches based on static analysis [Ben Khadra et al. 2020], could
further reduce the overhead, which we leave for future work. The last
column of Table 6.3 shows the combined overhead of both the canary
instrumentation and the coverage instrumentation.

Summary: Fuzzm performs hundreds of program executions per sec-
ond, which is only 37% slower than native AFL, despite executing the
program in a VM. The coverage instrumentation imposes an average
overhead of 1.46x, which dominates the overall overhead imposed by
Fuzzm’s instrumentation.

6.5.5 RQ4: E�ectiveness Against Exploitation

In the previous research questions, we have analyzed Fuzzm as an
end-to-end WebAssembly fuzzer. The canary instrumentations from
Section 6.3 are, however, also useful in a stand-alone setting, namely
for catching memory errors in production binaries to prevent exploita-
tion. To evaluate this scenario, we apply our canary instrumentation to
the three previously described, vulnerable WebAssembly applications
with proof-of-concept exploits in Section 3.4. The applications use Web-
Assembly in three di�erent settings: on a website in the browser, on
Node.js, and a command-line application for stand-alone WASI VMs.
Since the canary instrumentation is platform-independent, we can harden
binaries in all three settings. The proof-of-concept inputs exploit two
bu�er over�ow vulnerabilities on the stack, and one bu�er over�ow
on the heap that writes into allocator metadata (Table 3.2). We con-
�rm that the uninstrumented, original WebAssembly binaries can be
exploited, which causes cross-site scripting, executes code, and writes
to an unintended �le, respectively. Then, we successfully instrument
all three binaries, without requiring access to the source code or their
build process. When given correct and benign inputs, those three in-
strumented binaries work as before, but when passing the exploit in-
puts, all three examples are successfully terminated by the inserted ca-
nary checks.

Summary: The stack and heap canaries inserted by our binary-only
instrumentation e�ectively hardens existing binaries and protects
against previously demonstrated exploits.
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6.5.6 RQ5: E�ciency of the Inserted Canaries

As demonstrated in the previous section, the inserted canaries can miti-
gate bu�er over�ow attacks when applied to existing binaries. For this
usage scenario, it is essential that the canaries have only a minimal
impact on performance. We evaluate their e�ciency by running the
benchmark programs with and without instrumentation on the inputs
from RQ3. The results are in Table 6.3, which shows the execution times
with di�erent combinations of canaries relative to the execution time
of the uninstrumented programs.

Both the stack and heap canary instrumentation only slightly impact
performance, with an average execution time of 1.06x and 1.05x rela-
tive to the uninstrumented binary. The stack canary overhead is simi-
lar to e�cient implementations of canaries for native binaries [Dang et
al. 2015], which are employed by default in common compilers (Clang,
GCC, MSVC). Some applications, e.g., jbig2dec with an execution time
of 1.22x, are impacted more than others, e.g., �ac, where the overhead
is negligible. The relative cost of heap canaries depends on the num-
ber of memory allocations, especially small ones. While pdfresurrect,
an analyzer of PDF �les, stands out due to its frequent allocations, the
overhead for the other applications is low or even too small to measure.
The overhead with both canary instrumentations applied (column “All
Canaries”) is approximately the combination of both, imposing a mod-
erate overhead of 1.11x.
Summary: The overhead imposed by the canary-based oracles is
small (1.06x and 1.05x on average, respectively) and comparable to ca-
nary implementations for other binary formats, which is encouraging
for their use to harden production binaries.

6.6 summary

WebAssembly programs are becoming more and more prevalent, which
increases the need for techniques that can uncover security problems.
This chapter presents Fuzzm, the �rst binary-only greybox fuzzer for
WebAssembly. The approach combines canary-based binary instrumen-
tation to detect over�ows and under�ows on the stack and the heap,
an e�cient coverage instrumentation, a WebAssembly VM running the
program, and the input generation algorithm of native AFL. Fuzzm
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works directly on production binaries, without requiring access to the
source code. We show that Fuzzm �nds a substantial amount crashes
in real-world WebAssembly binaries, while being e�cient enough to
perform hundreds of executions per second, even though WebAssem-
bly is a slower, non-native language. Besides as oracles for fuzzing, the
canaries also serve as a stand-alone binary hardening technique to pre-
vent exploitation of vulnerable binaries in production. In this scenario,
the approach prevents our previously discussed exploits while impos-
ing low overhead. Overall, our work is an important step toward secur-
ing increasingly popular WebAssembly programs against exploitation
of memory vulnerabilities.



7 S N O W W H I T E : N E U R A L R E C O V E R Y
O F H I G H - L E V E L T Y P E S

As a low-level code format, WebAssembly binaries are hard to under-
stand. This is especially true for web developers, which only had to
deal with high-level JavaScript on the client side so far. Chapter 4 has
also shown that many WebAssembly binaries on the web lack debug in-
formation, which exacerbates the problem. Developers thus need help
with reverse engineering WebAssembly binaries.

Recovering high-level function types is an important part of reverse
engineering. One method to recover types is data-�ow analysis, but it is
complex to implement and may require manual heuristics when logical
constraints fall short. In contrast, this chapter presents SnowWhite,
a machine learning-based approach for recovering precise, high-level
parameter and return types for WebAssembly functions. It improves
over prior work on learning-based type recovery by representing the
types-to-predict in an expressive type language, which can describe a
large number of complex types, instead of the �xed, and usually small
type vocabulary used previously. Thus, recovery of a single type is no
longer a classi�cation task but sequence prediction, for which we build
on the success of neural sequence-to-sequence models. We evaluate
SnowWhite on a new, large-scale dataset of 6.3 million type samples
extracted from 300,905 WebAssembly object �les. The results show the
type language is expressive, precisely describing 1,225 types instead
the 7 to 35 types considered in previous learning-based approaches.
Despite this expressiveness, our type recovery has high accuracy, ex-
actly matching 44.5% (75.2%) of all parameter types and 57.7% (80.5%)
of all return types within the top-1 (top-5) predictions.

This chapter shares large parts of its material with the corresponding
publication [Lehmann and Pradel 2022]. The author of this dissertation
is also the main author of that paper and did all of the implementation,
data collection, evaluation, and the majority of the writing.
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7.1 motivation and contributions

Because WebAssembly programs are in a low-level, binary format, un-
derstanding them is all but trivial. At the same time, due to its increas-
ing popularity and the multitude of application domains, there is am-
ple demand for reverse engineering WebAssembly code. For example, a
developer integrating a third-party WebAssembly module may want to
better understand its exported functions, or audit it to prevent supply-
chain attacks [Zimmermann et al. 2019]. Security experts may need
to analyze malicious WebAssembly binaries, which, e.g., try to escape
from the browser sandbox [Plaskett et al. 2018; Silvanovich 2018], or
perform unsolicited cryptocurrency mining [Musch et al. 2019b]. Fi-
nally, good reverse engineering tools are even more important when
malicious JavaScript code is intentionally hidden inside or compiled to
WebAssembly for obfuscation [Romano, Lehmann, et al. 2022].

An important �rst step toward understanding a WebAssembly bi-
nary is to understand the type signatures of its functions. Because types
are highly relevant for understanding low-level code, they are similarly
targeted by existing reverse engineering tools for native binaries [Ca-
ballero and Lin 2016; Chua et al. 2017; Pei et al. 2021]. Developer studies
also show that static types help to understand code [Hanenberg et al.
2014; Mayer et al. 2012].

Unfortunately, the types available in a WebAssembly binary are only
of very limited help. WebAssembly code is statically typed, but there
are only four low-level primitive types for numbers. To a reverse engi-
neer, those are not very informative. E.g., an i32 could be a signed or
unsigned integer in the application domain, a size in bytes, an array, a
pointer to a struct, or one of many other source types. Thus, in addi-
tion to WebAssembly’s four low-level types, it would be bene�cial to
recover precise, high-level types similar to those used in the program-
ming language the binary was compiled from.

One avenue to recover high-level types is based on “classical” data-
�ow analysis or type inference, which collects constraints based on
how values are used in the program [Caballero and Lin 2016]. However,
this is complex to implement and often builds on heavy analysis frame-
works, such as BAP or CodeSurfer [Lee et al. 2011; Noonan et al. 2016].
Supporting WebAssembly, especially with its slightly unusual stack
machine (Section 2.2), would be a non-trivial undertaking. More fun-
damentally, not all information can be expressed as logical constraints,
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so manual heuristics are often still employed to present simpli�ed, in-
tuitive types in the end [Noonan et al. 2016].

In contrast, we pursue a data-driven, learning-based approach, in line
with general guidelines on when neural software analysis is bene�-
cial [Pradel and Chandra 2021]. For example, some sequences of in-
structions may only provide a statistical hint, but no guarantee about
the type of a parameter. Similarly, there is often no single correct so-
lution in type recovery, e.g., both class and struct might be valid in
terms of constraints, yet convey di�erent intuitions to a human reverse
engineer. Finally, there is, at least in principle, ample data to learn from,
as arbitrary code can be compiled to WebAssembly and debug informa-
tion can provide type labels for supervised training.

Various learning-based approach for predicting types in other lan-
guages have been proposed in recent years. They consider either bi-
naries for native architectures [Chua et al. 2017; J. He et al. 2018; A.
Maier et al. 2019] or dynamically typed source languages, e.g., Python
[Allamanis, Barr, et al. 2020; Pradel, Gousios, et al. 2020] and Java-
Script [Hellendoorn, Bird, et al. 2018; Malik et al. 2019; Raychev et al.
2015]. These approaches explore di�erent input representations, e.g.,
token sequences [Hellendoorn, Bird, et al. 2018], data �ow graphs [Al-
lamanis, Barr, et al. 2020], and natural language associated with code
[Malik et al. 2019], and di�erent model architectures and ways of train-
ing them, e.g., recurrent neural networks [Pradel, Gousios, et al. 2020],
transformers [Ahmed et al. 2021], graph neural networks [Allamanis,
Barr, et al. 2020], and unsupervised pre-training [Pei et al. 2021].

Unfortunately, current learning-based approaches su�er from two
key limitations. First, on the practical side, no existing approach pre-
dicts high-level types for WebAssembly. Second and more fundamen-
tally, prior work focuses either on how to represent the code for which
types are predicted, or on what machine learning model is most suit-
able for this task. In contrast, another important aspect of type pre-
diction is currently understudied: How to represent the to-be-predicted
types themselves? Almost all existing papers, with one noteworthy ex-
ception [Allamanis, Barr, et al. 2020], formulate type prediction as a
classi�cation problem. As classi�cation scales poorly to a large number
of classes, this formulation typically implies a small number of types
to choose from. For example, recent binary-level type prediction mod-
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els [Chua et al. 2017; J. He et al. 2018; A. Maier et al. 2019; Pei et al. 2021]
support only 7, 11, 17, and 35 types, respectively.

This chapter addresses both the lack of a type prediction approach
for WebAssembly in particular, and the limitations of previous learning-
based approaches to represent types for binary type recovery in gen-
eral. We present SnowWhite,1 a learning-based approach for predict-
ing high-level function types for a given WebAssembly binary. The
core technical contribution is using an expressive language for describ-
ing the types SnowWhite can predict. The language supports primi-
tive types, named types, aggregates, such as pointers, arrays, and enums,
as well recursive combinations of the above. Because di�erent source
languages compile to WebAssembly (Chapter 4), the type language
is derived from the dwarf debugging format [DWARF 5 Standard],
which is supported by several compilers for di�erent source languages.

Given the type language, SnowWhite trains a model to predict
types as a sequence of tokens. That is, we formulate the type predic-
tion problem as a sequence prediction, and not a classi�cation task. An
important advantage of sequence prediction is that we do not have to
arti�cially limit the number of types the model can choose from, but
instead support (at least in principle) in�nitely many types.

To train and evaluate SnowWhite, we also gather the �rst large-
scale dataset of WebAssembly binaries with debugging information.
Based on the dwarf information provided by the compiler, we can
associate each WebAssembly function with its return type and param-
eter types. Our dataset consists of 6.3 million types in 300,905 Web-
Assembly object �les compiled from over 4,000 C and C++ Ubuntu
source code packages. The dataset is two orders of magnitude larger
than datasets considered in previous work on WebAssembly compiled
from source code, which consider only tens of programs [Jangda et
al. 2019]. Beyond this work, we envision the dataset to provide a ba-
sis for other learning-based work on WebAssembly, e.g., to predict the
names of program elements or to decompile WebAssembly code back
to source code.

Our evaluation shows that the type language expresses 1,225 dif-
ferent types, i.e., many more than prior work on binary type predic-
tion [Chua et al. 2017; J. He et al. 2018; A. Maier et al. 2019; Pei et al.

1 In the eponymous fairy tale, the protagonist discovers helpful dwarfs. In our approach,
we want to recover types from the dwarf debugging information format.
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2021], while also o�ering a more uniform type distribution. Despite
this expressiveness, the type prediction model exactly predicts 44.5%
(75.2%) of all parameter types and 57.7% (80.5%) of all return types
within the top-1 (top-5) predictions, clearly outperforming a statistical
baseline approach based on the data distribution.

contributions In summary, this chapter contributes:
• Addressing the practical problem of predicting high-level types of

WebAssembly functions, which is important for understanding Web-
Assembly binaries.

• A type language for binary type recovery that is much more expres-
sive than the small number of labels used in prior learning-based
approaches (Section 7.3).

• Formulating the type prediction as a sequence prediction task, which
facilitates accurate predictions across a large number of types to
choose from (Section 7.4).

• Creating and sharing the so-far largest dataset of WebAssembly bi-
naries with debug information (Section 7.5).
The collected dataset, the source code, and our results are publicly

available at https://github.com/sola-st/wasm-type-prediction.

7.2 overview

This section gives an overview of SnowWhite, starting with a moti-
vating example in Listing 7.1, then de�nes the problem more precisely,
and presents the main components of the approach.

motivating example Listing 7.1a shows the source code of a func-
tion from libglpk, a linear-programming library written in C, con-
tained in the Ubuntu repositories. The function has one parameter,
which is declared as an array of doubles (line 1). If it is non-NULL, the
function reads two values from the array, and otherwise uses defaults
(lines 4–10).

Compiling this function to WebAssembly yields the code in List-
ing 7.1b. The comments are for illustration only and not part of the
actual binary. On the right, Listing 7.1c shows the type of the parameter
as represented in the dwarf debugging format [DWARF 5 Standard].
dwarf data is embedded in binaries when compiling with debug in-
formation (-g), but not present in stripped binaries a reverse engineer

https://github.com/sola-st/wasm-type-prediction
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1 void amd_control(double Control[]) {
2 double alpha;
3 int aggressive;
4 if (Control != (double *) NULL) {
5 alpha = Control[DENSE];
6 aggressive = Control[AGGRESSIVE] != 0;
7 } else {
8 alpha = DEFAULT_DENSE;
9 aggressive = DEFAULT_AGGRESSIVE;

10 }
11 if (alpha < 0) {
12 printf("no rows treated as dense");
13 }
14 [...]
15 }

(a) Excerpt of the C source code of a function in libglpk.

1 0073:
2 0076:
3

4 0091:
5 0093:
6 0095:
7

8 00e9:
9 00ea:

10 00ec:
11

12 00f7:
13 00f9:

;; Offset of the start of the code section; first function @code+3:
(func $1 (param $0 i32) (result)) ;; Low-level function type.

[...]
block

local.get $0 ;; Push the parameter on the stack.
br_if 0 ;; Branch if non-zero.
[...]

end ;; The branch continues here.
local.get $0
f64.load offset=8 ;; Load 64-bit float from memory at $0 + 8.
[...]
local.get $0
f64.load offset=0 ;; Load 64-bit float from memory at $0.

(b) The function from (a) compiled to WebAssembly. Byte o�sets into the binary
shown on the left. The parameter has only a low-level i32 type.

1 0026: DW_TAG_pointer_type // DWARF entry for one particular pointer type.
2 DW_AT_type @ 002b // The pointee type references another entry.
3 002b: DW_TAG_base_type // A primitive type, identified by:
4 DW_AT_name: "double" // - Its name in the source code.
5 DW_AT_encoding: DW_ATE_float // - An encoding, here IEEE 754.
6 DW_AT_byte_size: 8 // - Its size in bytes.
7 0033: DW_TAG_subprogram // DWARF entry for a function.
8 DW_AT_name: "amd_control"
9 DW_AT_low_pc: 0x03 // Offset of function from start of code section.

10 0047: DW_TAG_formal_parameter
11 DW_AT_name: "Control"
12 DW_AT_type @ 0026

(c) dwarf debugging information for (a).

pointer primitive float 64

(d)The high-level type to be pre-
dicted for the parameter of (a).

Listing 7.1: Motivating real-world example for recovering high-level
types from binaries. The source code, compiled WebAssembly, dwarf
information, and parameter type to predict for a function is shown.
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typically encounters. It is a hierarchical binary format, with single-tag
entries (blue) that have multiple attributes (teal), and potentially mul-
tiple other entries as children (e.g., the parameter in line 10 is a child of
the function in line 7). As attributes can refer to other entries (lines 2,
12), the information forms a directed, possibly cyclic graph. In the exam-
ple, the parameter entry refers to a pointer type entry (line 1), which
in turn refers to its element type, a primitive 64-bit �oat type (line 3).

problem definition The goal of SnowWhite is to predict pre-
cise, high-level types from WebAssembly binaries. Because understand-
ing functions and their types are valuable �rst steps to a reverse engi-
neer understanding the functionality of a binary, we focus on function
parameter and return types. More formally:

De�nition 1. The type prediction problem is to �nd a mapping
5 , 4, Clow → Chigh

where
• 5 is the body of a given WebAssembly function with : parameters

and zero or one return value,
• 4 ∈ {param1, ..., param: , return} is the desired element from the func-

tion signature to predict a type for,
• Clow ∈ {i32, i64, f32, f64} is the low-level WebAssembly type of 4 ,

already present in the binary, and
• Chigh ∈ Ltypes is a type de�ned by a high-level type language Ltypes .

SnowWhite predicts the type of each parameter and the return type
separately. As WebAssembly is statically typed, the low-level type of
each program element is known, which we exploit by providing it as
an input to the approach. The main novelty of SnowWhite is how to
represent the output Chigh of the type prediction task. One option would
be to predict one out of a �xed set of types, as done in prior work on
binary type prediction [Chua et al. 2017; J. He et al. 2018; A. Maier et
al. 2019; Pei et al. 2021]. For example, we could aim to predict simply
that the function parameter in Listing 7.1 is a pointer. While providing
a relatively easy prediction task, that approach misses many details
relevant for understanding the functions in a binary. Another option
would be to predict the full dwarf type (Listing 7.1c). However, full
dwarf types contain various details that are irrelevant for a reverse
engineer, making the prediction task unnecessarily hard.



160 snowwhite: neural recovery of high-level types
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Figure 7.1: Overview of SnowWhite’s components.

Instead of the above two extremes, SnowWhite predicts types that
are sentences in a high-level type language. For example, the type in
Listing 7.1d expresses the fact that the parameter is a pointer to a mem-
ory location that stores a primitive 64-bit �oat. Our high-level type
language is derived from dwarf, and hence can express types across
multiple source languages that are commonly compiled to WebAssem-
bly, such as C and C++. In contrast to dwarf, the type language omits
details that are not crucial to a reverse engineer but that would make
prediction harder.

snowwhite in a nutshell To address the type prediction prob-
lem, SnowWhite uses a neural sequence-to-sequence model and a
large-scale dataset of WebAssembly binaries with dwarf type infor-
mation. Figure 7.1 shows the two major phases of the approach: In
the training phase, the sequence-to-sequence neural network model is
trained from labeled data. As there exists no suitable large, real-world
dataset of WebAssembly functions with high-level type information,
we create a large-scale dataset by compiling 4,081 Ubuntu source pack-
ages to WebAssembly, resulting in more than 6.3 million labeled sam-
ples. In the prediction phase, a reverse engineer can query the trained
model with previously unseen WebAssembly functions, to obtain a
high-level type prediction for parameters and return values.

The following sections present the type language (Section 7.3), the
neural prediction model (Section 7.4), and the collected dataset (Sec-
tion 7.5) in more detail.
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7.3 high-level type language

Prior work has explored di�erent input representations and model ar-
chitectures for binary type prediction [Chua et al. 2017; J. He et al. 2018;
A. Maier et al. 2019; Pei et al. 2021]. Much less focus has been on the rep-
resentation of types for the prediction task itself. One core contribution
of this work is to describe the types to predict using a type language
that includes precise information about primitive types, nested types,
const and signed-ness, and type names. We refer to the language as
LSnowWhite, or LSW for short. Figure 7.2 gives a BNF grammar of the
language. Table 7.1 compares our type language against those used in
prior learning-based binary type prediction and against full dwarf
information [DWARF 5 Standard].

7.3.1 Type Language Structure

There are two extremes in terms of how types can be represented: On
the one end of the spectrum, types can be represented as a small, �xed
set of choices. This is the case for prior work, as shown in the �rst
four rows of Table 7.1. The |L| row shows the number of unique types
as reported in the respective papers. Even though a type grammar is
sometimes presented, this is only for illustration and the sets of types
these grammars describe are all �nite and small.

One virtue of a �xed set of types is simplicity, both in terms of data
extraction and the model architecture, as classi�cation tasks are simple
to train and evaluate. The downside is that there is a mismatch between
the �xed set of types and the in�nite types in the source program (e.g.,
in C and C++), where more complex types can be built up from simple
ones by composition. As such, the source types need to be heavily sim-
pli�ed to map to the target set, which loses information and equates
many potentially di�erent types.

On the other end of the spectrum stands the full type language of
dwarf. Types therein are directed, possibly cyclic graphs, allowing
dwarf to capture recursive types. A downside of this representation
is that predicting graphs with neural networks is challenging; recent
work we know of only encodes graphs, but does not predict them [Al-
lamanis, Brockschmidt, et al. 2018; Z. Chen et al. 2021; Hellendoorn,
Sutton, et al. 2020]. Full dwarf types also contain constructs that
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Table 7.1: Comparing di�erent type languages of learning-based binary
type prediction approaches. 3 means a feature is supported, 7 means
not. The ‘Prim. Size’ row shows whether the representation for primi-
tive types captures the size. † in that row means that sizes are captured
only via C type names, which are ambiguous, instead of an exact, un-
ambiguous representation.
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type := primitive primitive (primitive types)
| pointer type | array type (pointers and arrays)
| const type (const-ness)
| name name type (nominal types and typedefs)
| struct | class | union | enum (aggregates)
| function (for function pointers)
| unknown (uninformative type)

primitive := bool (booleans)
| int bitsint | uint bitsint (integers)
| float bitsfloat | complex (�oating-point)
| cchar | wchar bitswchar (characters)

name ∈ {"size_t", "FILE", "string", ...} (names)

bitsint ∈ {8,16, 32, 64}, bitsfloat ∈ {32, 64, 128}, bitswchar ∈ {16, 32}

Figure 7.2: Grammar of the high-level type language LSW.

are unlikely to be recoverable from binaries, e.g., optimization hints,
language-speci�c constructs, and domain speci�c names.

With our type language, we aim to strike a balance between those
two extremes. The grammar in Figure 7.2 produces types that are repre-
sented as a linear sequence of type tokens. The set of all possible types is
in�nite, and while we do not represent the �elds of aggregates, we do
allow nested types for pointers, arrays, const and names. Besides de-
scribing a larger set of types than prior learning-based type prediction,
the fact that each type in our language is a sequence of type tokens
allows us to formulate type prediction as a sequence prediction task.

To produce a type sequence in our language from the dwarf in-
formation in a binary, we recursively traverse the dwarf type graph,
pattern match on the type constructor (e.g., DW_TAG_pointer_type in
Listing 7.1c) and convert it to a type constructor of Figure 7.2 or remove
it. Figures 7.1c and d show an example of a dwarf type represented in
our language. We break cycles to prevent generating in�nite type se-
quences. We now describe the features of our grammar in more detail.
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7.3.2 Primitive Types

Primitive types in binaries, as represented in dwarf, are surprisingly
complex. All type prediction approaches have some representation of
integers, but they di�er in their precision and how they handle other
primitives, which can lead to ambiguous or incorrect type labels (rows 3
to 7 of Table 7.1).

First, our language has an explicit boolean type. Even though on a
machine-level, boolean values are represented as integers, we believe
the type distinction is important and instructive for reverse engineers,
e.g., bool is more telling than just int. Eklavya and StateFormer do not
distinguish the two and map booleans to integers instead.

Second, we support �oats of di�erent width (single, double, and quad
precision) and the C built-in complex type. In contrast, �oating point
types are not handled by Debin at all, and Eklavya and TypeMiner do
not capture their width.

Third, our language represents integer types precisely. Eklavya does
not distinguish di�erent sizes or signed-ness of integers, e.g., short
and long long are mapped to the same type. A better, but still naive ap-
proach is to represent integer types by their name in the source code,
e.g., int or unsigned long. This is problematic, because the relation
between the source code name and the machine representation of in-
tegers is both ambiguous and not injective. The mapping of name to
representation is not injective because di�erent names can map to the
same type, e.g., short, short int, and signed short int (and even per-
mutations thereof) are all the same type in C. In other languages, the
same type is called di�erently again, e.g., i16 in Rust. Using the source
code name for identi�cation would thus introduce distinct classes for
what is really the same type. Additionally, the mapping from name to
representation is ambiguous, e.g., long can be both 32 bits wide or 64
bits wide, depending on the compiler’s data model (ILP32 vs. LP64).
That is, a reverse engineer cannot tell the bit-width from long alone.
Thus, unlike prior work, which uses C and C++ type names to iden-
tify integers, we choose an unambiguous and language-independent
representation based on bit-width and signed-ness.

Finally, our type language models character types precisely. In C and
C++, signed and unsigned char are just 8-bit integers, and encoded in
our approach as such. A “plain” char in C is di�erent from both, and
used only for character data, not in arithmetic operations. It commonly
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appears in string-handling functions. We represent it as cchar. Wide
char types, e.g., wchar16_t in C++, are used for 16 and 32-bit unicode
characters and modeled in our language as well. Prior approaches do
not distinguish between those types.

In summary, our encoding normalizes all primitive types appearing
in the dataset to an unambiguous representation of 16 types. It does not
con�ate di�erent types with each other, and assigns exactly one type
name per unique underlying primitive type. Notably absent are high-
level data structures such as strings, lists, or dictionaries, as they are
not built-in in systems languages, unlike, e.g., in Python or JavaScript.

7.3.3 Pointers and Aggregate Types

More complex aggregate types can be built up from constituents, e.g.,
in array, pointer, or struct types. Our type language supports both ar-
rays and pointers (unlike Eklavya, which maps the former to the latter)
and also captures the nested type of their elements and pointee, respec-
tively. This is unlike Eklavya and Debin, where all pointers are *void,
regardless of what they actually point to. TypeMiner and StateFormer
discern certain classes of pointers from each other, e.g., pointers-to-
structs from function pointers, but are not recursive, and as such can-
not represent, e.g., the C type *char[] (which would be array pointer

char in our type language).
We do not capture individual �elds of aggregate types like structs

and unions, which is where we lose information compared with full
dwarf types. As not every �eld of a struct or union is used in a given
function, prediction of �eld types is a challenge left for future work. To
model function pointers, our language includes a function constructor.

7.3.4 Type Attributes and Language-Speci�c Types

dwarf information includes type attributes, e.g., const. We include
const as a type constructor into our language. This allows a reverse en-
gineer to discern between a pointer to constant data (pointer const C ),
a pointer whose value is constant (const pointer C ), and a mutable
pointer C , and thus gives useful information about the invariants of the
source program. This is similar to the constraint-based Retypd [Noo-
nan et al. 2016], but unlike all prior learning-based approaches. dwarf
types also contain the attributes volatile and restrict, but since those



166 snowwhite: neural recovery of high-level types

are optimization hints for the compiler and likely hard to recover, we
remove them when traversing the input type.

We also aim to recover some language speci�c types, notably the
distinction between a class and a struct. We believe this is useful
to reverse engineers because classes point to object-oriented program-
ming, frequently have methods, and implicitly identify the source lan-
guage as C++, whereas structs are idiomatic for plain old data. Neither
learning-based nor constrained-based approaches so far aimed to re-
cover this distinction, instead equating classes and structs into a single
concept. The distinction between C++ references and C pointers is less
instructive and more di�cult to recover, so we map those to a single
pointer constructor.

7.3.5 Unknown and Unspeci�ed Types

In some cases, the type information in dwarf can be incomplete. One
common cause are forward declarations in C and C++, such as

struct name;

Even though a forward declared type cannot be used directly in param-
eters or return types, they frequently appear behind pointers. Similar
are void pointers, e.g., in the return type of malloc and other generic
functions. A third case is the C++ nullptr expression, which has an un-
nameable type decltype(nullptr). In all three cases the element type
is unknown, but we still know that this is a generic pointer. We thus
feature an unknown constructor, similar to an uninformative type > in
other type systems, and encode all three mentioned cases as pointer

unknown.

7.3.6 Names and Typedefs

The type language so far is precise, but still purely structural and fairly
low-level, thus capturing little “human intuition” about the high-level
semantics of types. Type names can convey such semantics and are
included in dwarf, so we would like to recover them (at least par-
tially) in our prediction task. This sets us apart from prior work on
learning-based type prediction from binaries, that never went beyond
primitive types and simple aggregates. Constraint-based approaches
also either ignore type names fully, or rely on manually written rules
for some well-known functions [Noonan et al. 2016]. There are several
challenges when representing names in types.
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Names in dwarf types appear in two places, namely in typedefs
and in named aggregate type de�nitions, such as struct, class, or
union. In both cases, names are used to ascribe meaning, but only the
latter introduces a nominal type with strict typing discipline. Typedefs
are merely aliases, i.e., can be freely exchanged with the underlying
type. Should we thus remove typedefs? We argue not, because their
names still convey useful information, e.g., the type size_t is more in-
structive than just integer. We thus map names in typedefs and names
in datatype de�nitions to a single name constructor that also contains
the underlying structural type. E.g., name "size_t" uint 32 captures
both the name and the underlying structural type.

Next, what to do with nested names? Those can appear either be-
cause of the previous conversion, or simply because of repeated type-
defs. Consider the frequent example of a typedef in conjunction with
a struct de�nition:

typedef struct sname { /* fields... */ } tname;

Which name should be used for the type: tname or sname? We solve this
by �ltering the names (see below), and then keeping only the outermost
(i.e., �rst) name constructor in a type sequence, as this is most likely the
user-visible name. That is, the example would be represented as name

"tname" struct in our type language.
Finally, out of all names in the dwarf information, we keep only a

subset in our language. First, because of the age and low-level nature
of C and C++, there is less of a shared type vocabulary than there is,
e.g., in Python. Many programs de�ne their own data structures and
even aliases for primitives. We do not want to predict such domain
or project speci�c names. Second, very infrequent type names cannot
be realistically predicted, and unlike in type-prediction approaches for
high-level languages, the input binary contains no natural language
data that a copy mechanism [Gu et al. 2016] could use to generate type
names from the input.

We thus extract a set of : common names (from typedefs and named
datatypes), where we de�ne common as all names that appear at least
once in 1% of all packages in our dataset. Additionally, we �lter out
names that start with an underscore (as those are likely internal) or
where the typename is equal to what we already capture in our primi-
tive type representation, such as the name uint32_t. For generic types,
e.g., the C++ template std::vector<int>, type arguments are included
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in the name. An alternative would be to abstract over the argument, but
for simplicity and to retain more information, we keep the name as-is.

7.3.7 Type Language Variants

To evaluate the e�ect of di�erent type languages on the type distribu-
tion and the accuracy of type prediction, we also de�ne two variants of
our language. We call the type language described so far LSnowWhite
(or LSW for short).

First, we de�ne a variant of LSW that contains all type names in the
dataset. That is, it has the same grammar as in Figure 7.2, and performs
the same mapping of typedef and datatype names to a name constructor,
and keeps only the outermost name as described in Section 7.3.6, but it
does not restrict the set of names based on the number of packages they
appear in. Consequently, many more types are named in this language.

Second, we de�ne a simpli�ed version of LSW, which removes the
following constructors from Figure 7.2: const, class, and name. Con-
sequently, types in this language are never named, classes are repre-
sented as structs, and const constructors are �attened away. This
makes the language considerably simpler and closer to the languages
in prior binary type prediction work.

We discuss the e�ect of those variants on prediction in Section 7.6.

7.4 type prediction model

We now present how SnowWhite predicts high-level types for Web-
Assembly functions with a neural model. Our work is the �rst to for-
mulate prediction of a single type as a sequence prediction task ?

? : (81, ..., 8<) → (C1, ..., C=)
where (81, ..., 8<) are instruction tokens extracted from the WebAssem-
bly function body (Section 7.4.1) and (C1, ..., C=) are type tokens as de-
scribed by our type language. We address the prediction task ? with
a state-of-the-art, sequence-to-sequence neural network model (Sec-
tion 7.4.2) trained in a supervised manner to minimize the di�erence
between the predicted type and the known actual type.
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7.4.1 WebAssembly Input Representation

Section 7.3 covered the type language and its type tokens C8 , but we
also need to represent the WebAssembly input as tokens 88 .

instruction tokens To predict the parameter types and the re-
turn type of a function 5 , SnowWhite creates a sequence (81, ..., 8<)
of instruction tokens from 5 ’s representation in the WebAssembly bi-
nary. First, we disassemble the binary into a sequence of instructions
for each function. In contrast to native binary formats, e.g., x86, static
disassembly is well-speci�ed and robust for WebAssembly (Section 2.1).
Then, we represent each instruction as in the WebAssembly text format
(e.g., i32.const 42 for the instruction that pushes 42 on the stack), and
delimit individual instructions by ‘;’. We omit some static arguments
of instructions that are likely unhelpful and unnecessarily increase the
number of tokens, namely alignment hints for memory accesses and
the function index of the callee in call instructions. For predicting
the type of a parameter ? , we replace the index of ? in local.get,
local.set, and local.tee instructions with the special token <param>,
to indicate to the model which parameter to focus on. Finally, we also
add the low-level type (e.g., i32) of the parameter or return value to
predict at the beginning of the sequence, delimited by a <begin> token.

handling long functions Binary code can have very long func-
tions, which results in even longer token sequences. In our dataset, 10%
of the functions have more than 1000 tokens and 1% even more than
5500 tokens. Because recurrent neural networks have trouble handling
long sequences [Pascanu et al. 2013], and to facilitate e�cient training
in mini-batches, sequences are truncated and padded to a �xed length
(here: 500 tokens) during training.

Prior learning-based approaches on code often completely �lter out
long samples from the dataset, both during training and evaluation
[Chua et al. 2017; Hellendoorn, Bird, et al. 2018; Lacomis et al. 2019].
As removing long functions from the test data may unrealistically in-
�ate accuracy numbers, we do not follow this practice.

Instead, SnowWhite extracts windows of instructions around in-
structions related to the to-be-predicted type. For predicting a param-
eter type, the approach extracts �xed-size windows around all instruc-
tions that use the parameter (local.get, local.set, and local.tee),
and concatenates the windows, omitting the instructions in between.
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For prediction of a return type, SnowWhite extracts all windows end-
ing in a return instruction. Windows are delimited by a <window> token
from each other.

example For illustration, consider the following sequence of 88 to-
kens, extracted for predicting a parameter type:

( ‘i32’, ‘<begin>’,
‘i32.const’, ‘42’, ‘;’, ‘local.get’, ‘<param>’, ‘;’, ‘call’, ‘<window>’,
‘i32.add’, ‘;’, ‘local.set’, ‘<param>’, ‘;’, ‘i32.eqz’ )

It starts with the low-level type i32 of the parameter to predict and then
contains two windows of F = 3 instructions each, extracted around
usages of the parameter. By default, we extract windows of sizeF = 21,
i.e., 10 instructions to the left and right of parameter usages, and 20
instructions before a return instruction.

token-level embedding Finally, the tokens, both for the Web-
Assembly code and the type language, need to be converted to real-
valued vectors for the neural network. We jointly train embedding lay-
ers that map each individual token to a dense vector of dimension 4 ,
with one embedding for WebAssembly tokens and one for type tokens.

If we would naively embed all WebAssembly tokens, one issue is the
very large number of unique, but infrequent tokens in code [Karampat-
sis et al. 2020]. In particular, our dataset contains more than E = 427,000
unique WebAssembly tokens. The majority of those are numbers in the
instructions, such as memory o�sets, or integer and �oating point con-
stants. Using a very large vocabulary is undesirable due to increasing
the number of model parameters (and thus memory usage), so instead
we �rst build up a subword model based on byte-pair encoding (BPE)
[Sennrich et al. 2016] that re-tokenizes the input into only E ′ � E sub-
word tokens. This breaks down infrequent source tokens into multiple
subword tokens, which are then embedded with a much smaller em-
bedding matrix, at the cost of slightly increased sequence length. We
employ subword tokenization both for WebAssembly and for the type
language.

7.4.2 Sequence-to-Sequence Model Architecture

To address the sequence-to-sequence prediction task, we reuse state-of-
the-art results from neural machine translation (NMT). As the model
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architecture is standard, we keep this description short and refer to the
available implementation and literature for details.

The model is queried separately for every parameter of a function
and its return type, that is, only a single type (which is itself a sequence)
is generated per prediction. For each type-to-predict, we present the
model with a separate input sequence. For example, to predict the types
of a function of two arguments, we would query the same model twice,
but with slightly di�erent inputs.

We train two separate models, one for parameter and one for re-
turn type prediction. We use the same con�guration for both models,
namely a bidirectional LSTM model with global attention [Bahdanau
et al. 2015; Luong et al. 2015] and dropout for regularization [N. Srivas-
tava et al. 2014], as implemented in the OpenNMT framework.2 The
network’s weights are optimized by standard backpropagation through
time gradient descent with the Adam optimizer [Kingma and Ba 2015].
As an alternative sequence-to-sequence architecture, we also explored
Transformers [Vaswani et al. 2017], but did not �nd it improving ac-
curacy, so we select the computationally much cheaper LSTM model.
More experimentation with other model architectures is orthogonal to
our work; there is ample work on alternative architectures and repre-
sentations of code [Allamanis, Brockschmidt, et al. 2018; Alon, Zilber-
stein, et al. 2019; Feng et al. 2020; Guo et al. 2021; Hellendoorn, Sutton,
et al. 2020].

As hyperparameters, we choose after experimentation: ℎ = 512 as
the dimension of the hidden vectors, ;4 = 2 two layers for the encoder
and ;3 = 1 a single layer for the decoder, ;A = 0.001 as the initial learning
rate and default momentums for Adam, 3 = 0.2 as the dropout rate,
4 = 100 as the dimension of the embeddings, and E ′ = 500 as the
subword vocabulary size. The models have about 5.5 million learnable
parameters in total.

7.5 dataset

Training the neural models in SnowWhite for predicting types re-
quires a dataset (i) from a diverse set of source programs, (ii) compiled
to WebAssembly binaries, (iii) including the appropriate dwarf infor-

2 [Klein et al. 2017], https://github.com/OpenNMT/OpenNMT-py

https://github.com/OpenNMT/OpenNMT-py
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mation, and (iv) resulting in an overall dataset size that is conductive
to training a deep neural network.

Unfortunately, the datasets we have collected for earlier projects in
this dissertation so far, do not ful�ll all those requirements. The pro-
grams used in the evaluations of Chapters 3, 5, and 6 are relatively
small, in the order of tens of programs. While the WasmBench dataset
from Chapter 4 is considerably larger, with 8,400 WebAssembly bina-
ries, it contains neither the required source code nor dwarf debug
information. Similar caveats apply also to WebAssembly datasets used
in other work [Haas et al. 2017; Jangda et al. 2019].

We thus collect our own large-scale dataset, which comprises 6.3mil-
lion samples of WebAssembly code and types, extracted from 300,905
object �les, which were compiled from 4,081 C and C++ Ubuntu pack-
ages. Beyond type prediction, we envision the dataset to also serve
other purposes, e.g., for work on recovering names from stripped bi-
naries, decompilation, or �nding compilation issues.

compiling to webassembly binaries We start from all 70,065
source packages in the Ubuntu 18.04 repositories. Filtering out Linux
kernel modules, which are unlikely to be compilable to WebAssembly,
duplicates of applications for di�erent locales, and fonts, 61,261 pack-
ages remain. We download their source code and keep all packages
with at least one C or C++ source �le. To compile the packages to
WebAssembly, we modify the build scripts to use Emscripten, which
is based on LLVM and the currently most popular compiler for WebAs-
sembly. We add the -g �ag to add debugging information in the dwarf
format, but leave all other compilation options unchanged. In partic-
ular, all packages are compiled with their original optimization level
(e.g., -O2 or -O3), re�ecting the options used for realistic binaries found
in the wild and which a reverse engineer would encounter in practice.
In total, 4,081 packages can be partially built to at least one object �le,
producing a total of 300,905 object �les with WebAssembly code and
dwarf information.3

deduplication Following the advice by Allamanis [2019], we
deduplicate the dataset to avoid arti�cially in�ating our results. One
option is to deduplicate individual functions or type samples. However,

3 Final linking frequently fails because Emscripten uses musl libc instead of glibc. As
pre-linking object �les still contain WebAssembly and dwarf information, those can
still be used to train and evaluate our approach.
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Allamanis [2019] notes that in some tasks, duplication is part of the true
data distribution. Functions are frequently duplicated across di�erent
binaries when they stem from the same statically linked library, which
is the case in WebAssembly. Thus, instead of deduplicating on the level
of functions or samples, we deduplicate at the level of binaries. As a �rst
step, we remove exact duplicates of binaries, identi�ed by hashing the
full �le contents.

To also remove near-duplicates, e.g., because of included strings like
build time in the binary, we also compute an approximate signature of
each binary. The signature takes only the function bodies into account,
where each function gets a hash based on its abstracted instructions.
The abstraction removes immediate arguments from the instructions,
i.e., local.get $0 is mapped to local.get, or i32.load offset=8 to just
i32.load. The function hashes are then concatenated (i.e., function or-
der is taken into account) and the result is hashed again to obtain an
approximate signature for the whole binary. Out of multiple binaries
with the same signature, only one is �nally retained in the dataset.

Overall, deduplication reduces the dataset from 3.8 billion instruc-
tions and 31 million functions in 300,905 object �les, down to 866 mil-
lion instructions and 7.9 million functions in 46,856 object �les. Even
after this strict deduplication, our dataset is much larger than prior bi-
nary type prediction datasets: It is 1.8 times the size, in terms of number
of instructions, of the four-architecture dataset in [Pei et al. 2021], 21×
of [Chua et al. 2017], 32× of [J. He et al. 2018], and 1,059× of [A. Maier et
al. 2019]. With an average function length of 109 instructions, we also
believe our dataset is representative of real-world code, whereas an av-
erage length of ≈ 8 in [Pei et al. 2021] might indicate a dataset biased
towards very short functions. Our deduplicated set comprises 21 GiB of
WebAssembly binaries. This is 3.2× the size of the previously largest
WebAssembly corpus, our WasmBench dataset (Chapter 4), which ad-
ditionally lacks debug information.

matching webassembly to dwarf and filtering To train
SnowWhite in a supervised manner and as a ground truth for the eval-
uation, we associate WebAssembly functions with dwarf type infor-
mation about the parameters and the return value. Function bodies are
in the code section of a WebAssembly binary, whereas debug informa-
tion is split over several custom sections .debug_info, .debug_str, etc.
We match each WebAssembly function with the corresponding dwarf
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information via the function’s o�set in the binary. This can be seen in
the DW_AT_low_pc attribute of Listing 7.1c, which identi�es the function
by its o�set from the start of the code section (Listing 7.1b).

The number of parameters of a function and also whether a function
has a return value, may di�er between the source code and the com-
piled binary, e.g., due to optimizations. If the number of function pa-
rameters in the dwarf information and the number of parameters in
the WebAssembly bytecode is the same, then we extract one parameter
type sample for each parameter. Likewise, if a function has a non-void
return type in dwarf and returns a value in WebAssembly, then we
extract a return type sample. Because of this, we do not extract type
samples for 6% of the 7.9 million functions in the deduplicated dataset,
which we believe does not introduce a signi�cant bias. Finally, to avoid
that one Ubuntu package with many samples biases our dataset, we
limit the number of samples per package to at most the number of
samples in the second most frequent package.

The �nal dataset after all deduplication and �ltering comprises 5.5
million parameter type samples and 796 thousand return type samples.
The lower number of return type samples can be attributed to many C
and C++ functions returning void, where no type needs to be predicted.

splitting the dataset We split the dataset into three portions:
one for training, one for early stopping and evaluating hyperparame-
ters, and a held-out test set. Randomly assigning each function or type
sample to one of the three portions could cause (i) functions from the
same binaries, or (ii) binaries from the same Ubuntu package ending
up in two di�erent portions of the dataset. Issue (i) is de�nitely unreal-
istic compared with the usage scenario of our approach, as the reverse
engineer encounters a previously unseen binary, and (ii) means infor-
mation from related binaries can leak from test to training data. To
avoid both issues, we hence split the dataset by original Ubuntu pack-
ages. Since the total number of samples in our dataset is in the order of
millions, the validation and test sets can be a relatively small portion of
the overall dataset [Amari et al. 1997]. We choose 96% of the packages
for training, and 2% for validation and testing, respectively.
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7.6 evaluation

We evaluate SnowWhite on the previously described dataset. In Sec-
tion 7.6.2, we focus on the expressiveness of our type language and
the resulting distribution of realized types. We show that the default
variant of our language distinguishes 1,225 unique types and provides a
more uniform type distribution than the small set of types predicted by
prior learning-based approaches. In Section 7.6.3, we evaluate the accu-
racy of the type prediction model. We show that SnowWhite predicts
44.5% (75.2%) of all parameter types and 57.7% (80.5%) of all return types
exactly within the top-1 (top-5) predictions. Finally, Section 7.6.4 qual-
itatively discusses the strengths and weaknesses of our approach with
some representative examples of predicted and ground truth types.

7.6.1 Implementation, Setup, and Runtime

Our implementation, the dataset, and all scripts required to reproduce
our work are publicly available at https://github.com/sola-st/wasm-

type-prediction. The implementation consists of about 500 lines of
Python and Bash for gathering the dataset, about 4,000 lines of Rust for
extracting and processing dwarf types and WebAssembly code, and
about 1,700 lines of Python for preparing the data and the neural model.
We use the gimli and wasmparser libraries for parsing dwarf and
WebAssembly, respectively.4 The neural sequence-to-sequence model
is built on top of OpenNMT-py for the neural model and SentencePiece
for the subword tokenization.5

We run all experiments on a server with with two Intel Xeon 12-core
24-thread CPUs running at 2.2GHz, using 256GiB of system memory,
and Ubuntu 18.04 LTS as the operating system. For training the neural
networks and during inference, we also use two NVIDIA Tesla T4 GPUs
with 16GiB of GPU memory each.

As usual, training neural networks takes orders of magnitude more
time than prediction, but needs to be done only once. In our case, the
fastest training run took about 1 hour 25 minutes and the slowest 11
hours 55 minutes on a single GPU. As a general rule, training a return
type model takes less time than a parameter type model (due to fewer

4 https://github.com/gimli-rs/gimli, https://github.com/bytecodealliance/
wasm-tools/tree/main/crates/wasmparser

5 https://github.com/OpenNMT/OpenNMT-py, https://github.com/google/sentencepiece

https://github.com/sola-st/wasm-type-prediction
https://github.com/sola-st/wasm-type-prediction
https://github.com/gimli-rs/gimli
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasmparser
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasmparser
https://github.com/OpenNMT/OpenNMT-py
https://github.com/google/sentencepiece
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Table 7.2: Most common types, expressed in LSnowWhite, in our dataset.
Short explanations for select types in italics.

Rank Type Sample Count % Total

1 pointer class
a pointer to a class 1,307,617 20.5%

2 pointer struct 918,332 14.4%

3 primitive int 32
a 32-bit signed integer 771,690 12.1%

4 pointer const class 468,184 7.3%
5 pointer const struct 185,635 2.9%

6 pointer const primitive cchar
a pointer to constant character(s) 184,586 2.9%

7 name "size_t" primitive uint 32
a 32-bit unsigned integer, named "size_t" 181,204 2.8%

8 primitive uint 32 144,519 2.3%

9 pointer unknown
a pointer of unspeci�ed pointee type 114,139 1.8%

10 pointer primitive int 32 101,947 1.6%

Total Samples in Dataset 6,376,307 100%

samples), and training with a simple type language takes less time than
with a complex language (due to shorter type sequences). Prediction
takes on average between 3ms and 40ms per input sample, including
beam search to produce multiple predictions. Such near instantaneous
results are another advantage of learning-based approaches, as no com-
plex constraint solving is required.

We train all models on the training portion of the data set. During
training, we check the accuracy on the validation set and stop early if
it regresses. Due to the large dataset, the models converge after one to
four epochs. We then take the best model from validation for �nal eval-
uation. All �nal type predictions are obtained on the test data, which
the model has never seen and was not used to select the best model.

7.6.2 High-Level Type Language

The following evaluates the expressiveness of our type language and
the type distribution that results from it.
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Table 7.3: Most common extracted type names.

Name Sample Count Packages

size_t 516,451 63.8 %
FILE 20,949 45.2 %
basic_string<char, ...> 135,900 17.2 %
basic_ostream<char, ...> 35,460 16.3 %
ios_base 10,002 16.1 %
ostreambuf_iterator<char, ...> 7,801 15.8 %
va_list 2,470 15.8 %
string 45,081 15.5 %

most common types Table 7.2 shows the ten most common types
in the dataset expressed in our type language. We observe that several
features make the language distinguish large groups of types from each
other that would otherwise be merged into imprecise labels. First and
most importantly, we see that 7 out of the 10 most common types are
some kind of pointer. Without tracking their pointee type, all of those
labels would collapse into one, so the recursive nature of our type lan-
guage is essential for informative predictions. Second, if we did not dis-
tinguish classes from structs, the largest two types would be merged
into a single type accounting for 35% of all data, instead of only 20%
and 14%, respectively. Third, const-ness is also useful, in particular in
the pointee type of pointers. Without it, the types with rank four and
�ve would be merged into the �rst two. Finally, we see that type names
are useful to distinguish size_t from other, non-speci�ed integers.

most common names Table 7.3 lists the eight most common type
names as de�ned in Section 7.3.6, ordered by in how many packages
they appear. In total, we extract 239 commonly used names from the
dataset. Those names are well-known, semantic types of C and C++
programs, and they are not domain or project speci�c. The most com-
mon name size_t appears in almost two thirds of all projects, followed
by FILE handles in a bit less than half of all projects. The distribution
levels o� quickly, with ranks three to six containing common types
from the C++ standard library related to strings and I/O. All of these
names are more useful to a reverse engineer than just the underlying
structural type, e.g., FILE instead of pointer struct. Of the 239 names
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Table 7.4: Type distributions of di�erent type languages compared.

Type Language |L| �
�max

Most Frequent Type

Parameter Return

LSW, All Names 146,883 0.69 primitive int 32 5% primitive int 32 30%
LSW 1,225 0.49 pointer class 22% primitive int 32 39%
LSW, Simpli�ed 120 0.42 pointer struct 57% primitive int 32 41%
LEklavya 7 0.38 pointer 78% int 51%

in our dataset, 141 (59%) also appear in the test data, so this feature is
su�ciently exercised during testing.

When comparing the name distribution to type distributions from
high-level languages [Allamanis, Barr, et al. 2020; Pradel, Gousios, et
al. 2020], complex data structures are notably absent, e.g., lists or maps.
This shows that there is much less of a shared “type vocabulary” in
binaries compiled from C and C++ than there is, e.g., in Python.

expressiveness To quantify how expressive our type language is,
e.g., compared to a �xed set of types as considered in prior work [Chua
et al. 2017; J. He et al. 2018; A. Maier et al. 2019; Pei et al. 2021], we
measure how many di�erent types it describes in our dataset. The un-
derlying assumption is that a larger set of types provides more precise
type information to users of type prediction, e.g., during reverse engi-
neering.

Table 7.4 compares our languageLSW (short forLSnowWhite), against
the two variants described in Section 7.3.7 and the type language of
Eklavya [Chua et al. 2017]. Column |L| shows the number of unique
types in the dataset, if expressed in the respective language. For that,
we re-extract samples from the binaries with di�erent con�guration
settings that map dwarf types to the respective languages.
LSW can distinguish 1,225 unique types, far more than the 7 types of

Eklavya, 11 of TypeMiner [A. Maier et al. 2019], 17 of Debin [J. He et al.
2018], or 35 of StateFormer [Pei et al. 2021]. Just by removing names,
const-ness and the distinction between classes and structs, the simpli-
�ed variant in the third row results in only 120 unique types in the
dataset, so our aforementioned type language features are clearly nec-
essary to express many types more precisely. In the “All Names” vari-
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ant, the large amount of project and domain speci�c names increases
the set of types than 100-fold to 146,883 unique types.

We also check that recursion in our type language is useful and even
necessary for many types. Of all type samples expressed in LSW, only
20.7% do not make use of recursion (e.g., primitive types), 48.3% have
one nested type constructor (e.g., pointer from Figure 7.2), and 31%
have an even deeper nesting depth of up to six nested type construc-
tors.

type distribution As another measure of how informative the
type language is, we also inspect the resulting distribution of realized
types when converting the samples in the dataset to the language. For
brevity, we do not show the full distributions, but summarize two key
aspects in Table 7.4.

First, column�/�max gives the normalized entropy of the type distri-
bution, where �max = log2 |L| is the entropy of a uniform distribution
of the same size. If a type distribution is very non-uniform, e.g., if one
type is extremely common, less information can be gained from a sin-
gle predicted type, and � becomes smaller compared to a more ideal,
uniform distribution of types. With the normalized entropy, we can
compare the entropy of distributions of di�erent size. Evidently, more
expressive type languages have not only more types, but are more uni-
formly distributed as well, as the entropy increases towards the maxi-
mum value of 1.

Table 7.4 also shows the most frequent type, separately for param-
eter and return types, and how much of the overall distribution that
type accounts for. For LEklavya, the pointer label makes up for almost
80% of the data, a very biased type distribution! Simpli�ed LSW with-
out names, const, and classes is similar to the type language used in
StateFormer [Pei et al. 2021], and is only slightly better, as the most
common parameter type already accounts for 57% of the data. LSW is
much more uniform with 22% for the most common parameter type. In-
terestingly, the return type distribution is less a�ected by the di�erent
languages than the parameter types. Regardless of the type language,
the most common label is a primitive integer, accounting for 30% (most
expressive language) to 51% (least expressive) of all return types. This
may be an artifact of C and C++, where complex results are often writ-
ten via pointers instead of being returned by value.
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summary We conclude that all features of our type language, in par-
ticular type names, recursion, const, and the distinction of class vs.
struct help to distinguish types and avoid a biased type distribution.
The extracted names convey useful intuitions and are project and do-
main independent. In general, parameter types are more sensitive to
the type language than return types. While more names can be added
to the language to increase the number of unique types, the next sec-
tion shows that accurate prediction also becomes much harder in that
case.

7.6.3 Type Prediction Model

We now evaluate the accuracy of our type prediction model.

metrics To compare a predicted type against the ground truth type,
we use two metrics. One is perfect match accuracy, i.e., the percent-
age of all predicted types that exactly match the ground truth. We re-
port perfect match accuracy within the top-1 and the top-5 predictions,
where the latter retrieves the top �ve most likely type predictions via
beam search.

Perfect match accuracy does not consider partially correct predic-
tions. For example, if the ground truth is pointer struct, a prediction
of pointer class is intuitively better than primitive int 32, but since
neither are exact matches, they do not count towards accuracy. We thus
introduce a metric for type accuracy based on the longest common pre-
�x of the prediction and the ground truth. The type pre�x score of a
prediction C ′ and ground truth C is the length of the common pre�x
TPS(C ′, C) = |commonPre�x (t ′, t) |. That is,

TPS(pointer struct, pointer class) = 1, but
TPS(pointer struct, primitive int 32) = 0.

Computed over the whole test set, TPS gives the average number of
type tokens that are correct until the predicted sequence diverges from
the ground truth.

baseline As there is no existing learning-based type prediction for
WebAssembly binaries, we compare our model against a statistical base-
line. This baseline exploits that the low-level WebAssembly type Clow
is available in the binary for each parameter and return sample. Given
only the Clow of an input, we can “generate” top-: predictions by copy-
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Table 7.5: Model accuracy on di�erent type prediction tasks, compared
with a conditional probability baseline.

(a) Parameter type prediction task.

Type Language LSW
LSW,

All Names
LSW,

Simpli�ed LEklavya
LSW, Clow
not given

Seq-to-seq Model, see Section 7.4
Top-1 Accuracy 44.5% 18.6% 65.1% 87.9% 42.4%
Top-5 Accuracy 75.2% 27.1% 86.2% 100.0% 73.4%
Type Pre�x Score 1.47 1.31 1.62 0.88 1.45

Statistical Baseline, based on % (Chigh | Clow)
Top-1 Accuracy 28.7% 13.0% 47.1% 77.1%
Top-5 Accuracy 61.4% 20.8% 78.1% 99.9% N/A
Type Pre�x Score 1.05 0.28 1.24 0.77

(b) Return type prediction task.

Type Language LSW
LSW,

All Names
LSW,

Simpli�ed LEklavya
LSW, Clow
not given

Seq-to-seq Model, see Section 7.4
Top-1 Accuracy 57.7% 40.6% 60.6% 76.3% 50.7%
Top-5 Accuracy 80.5% 47.3% 87.9% 100.0% 81.2%
Type Pre�x Score 1.37 1.00 1.38 0.76 1.02

Statistical Baseline, based on % (Chigh | Clow)
Top-1 Accuracy 49.9% 41.7% 50.7% 64.6%
Top-5 Accuracy 74.2% 48.5% 81.4% 100.0% N/A
Type Pre�x Score 1.14 0.92 1.16 0.65
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ing the : most likely high-level types for a given Clow from the con-
ditional probability distribution % (Chigh | Clow) that was empirical ob-
served on the training data. For example, the most common type for
Clow = i32 is pointer class, and for Clow = f32 it is primitive float 32.

results Table 7.5 shows the model accuracy for parameter (a) and
return type prediction (b). For our proposed type languageLSW, we see
that the model predicts the exactly correct parameter type in 44.5% of
the cases, even though there is a large choice out of 1,225 unique types.
If we accept any of the model’s top �ve predictions, the model is right
for 75.2% of the test samples. This is also not just because of a skewed
data distribution, as the baseline exploiting the underlying data distri-
bution achieves only 28.7% top-1 exact match accuracy, signi�cantly
less than the neural model. The model accuracy is even better for re-
turn type prediction with a top-1 (top-5) accuracy of 57.7% (80.5%). On
average, the type prediction model gets the �rst 1.47 (1.37) tokens of
the type sequence correct for parameter (return) types. We expect the
�rst tokens to be likely the most relevant to a reverse engineer, so this
is a good result.

We also judge the hardness of type prediction with di�erent lan-
guages. Without �ltering names (LSW, All Names), the task becomes
much too di�cult, with a top-1 accuracy of only 18.6% on parameter
types. This motivates our restriction to a vocabulary of common type
names. At the other end, for the simple language LEklavya we achieve a
top-1 accuracy of 87.9%, compared with an accuracy of around 81% on
native binaries reported in [Chua et al. 2017]. However, the statistical
baseline also casts doubt on whether this is really an achievement of
the model, or simply a very easy task, as even the baseline achieves
77.1% top-1 accuracy without any neural network. The model for sim-
pli�ed LSW sits between LSW and LEklavya, with a top-1 accuracy of
65.1% (60.6%) on parameter (return) types. In general, we can conclude
that the neural model accuracy is consistent with the complexity of
the type language. A good type language for learning-based type pre-
diction must balance the trade-o� between being precise and allowing
for accurate predictions.

ablation study and type depth The rightmost column for
both parameter and return type prediction in Table 7.5 is an ablation
study as to how much passing the WebAssembly low-level type Clow
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Figure 7.3: Prediction accuracy of LSW by type nesting depth.

helps the model to predict high-level types. For that, we take the same
language as in LSW, but remove the low-level type from the beginning
of the input sequence. For parameter types, the low-level type seems
to help only marginally (a di�erence of ≈ 2% in accuracy), possibly
because there are enough cues from the parameter usage even with-
out explicitly passing the low-level type. For return type prediction,
the low-level type seems more useful, with an accuracy di�erence of
approximately 9%.

Finally, Figure 7.3 shows the prediction accuracy of LSW, separately
for di�erent type nesting depths. The general trend is that accuracy de-
creases with more deeply nested types, as expected. However, even for
types with three (four) nested levels, parameters can still be predicted
exactly with a top-5 accuracy of 65% (43%). Return types are less deeply
nested in general and prediction accuracy is also worse beyond types
with a single or two nested levels.

7.6.4 Case Studies of Predictions

We show representative examples of predictions produced by the model,
to get an intuition how useful it is in practice.

examples in libgdal For predicting the �rst parameter sample in
the shu�ed test set, the LSW model is given a WebAssembly input of
8 instruction windows, containing 168 instructions and 453 tokens in
total. The input starts with:

i32 <begin> global.get 1 ; i32.const 294552 ; i32.add ;
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i32.const 3 ; i32.const 1 ; local.get <param> ; call ...

From just this input, the model’s top �ve predictions are:
pointer name "FILE" struct

pointer struct

primitive int 32

pointer primitive cchar

pointer const primitive cchar

The sample corresponds to the fourth parameter6 fp of a class method
in libgdal, a geospatial library written in C++. The method declaration
in the source code reads:

void DDFSubfieldDefn::DumpData(

const char * pachData, int nMaxBytes, FILE * fp ) ...

As we can see, the top-most prediction of the model is exactly correct,
the parameter is indeed a pointer to a �le handle. For a reverse engineer,
we believe this prediction in our type language is much more useful
than, e.g., pointer struct by StateFormer or just pointer by Eklavya.
The top-2 prediction would not have been incorrect either, just not as
precise, justifying our type pre�x metric for evaluation.

Staying with the example, the model’s predictions for the parameter
nMaxBytes of the same function are as follows:

pointer const primitive uint 8

primitive int 32

pointer const primitive cchar

pointer struct

pointer primitive uint 8

Here, the top-1 prediction is not correct, but the top-2 prediction is. It
is unclear how the model came up with the top-1 prediction; we can
only speculate that it got confused by instructions related to the other
parameter, whose string type is closer to the predictions.

examples in libtiff Taking the �rst return type sample in the
test set from the next library, the model attempts to predict the return
type of the following function in libtiff:

int JPEGVGetField(TIFF* tif, uint32 tag, va_list ap) ...

The model’s top �ve return type predictions are:
primitive int 8

primitive uint 32

6 We regard the methods’ receiver object as the implicit �rst parameter.
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primitive uint 32

pointer name "Exception" class

primitive int 32

The correct prediction is on place �ve. As the raw model is not con-
strained to generate �ve unique predictions, we also see two duplicate
predictions. In a production-grade type prediction tool, the raw model
outputs could be �ltered to only include unique types. Interestingly,
the body of the function (not shown) returns a literal 1, so the other
primitive predictions would have actually been type compatible in C,
showing the di�culty in getting accurate training data.

Finally, we inspect the top-most prediction for the �rst parameter
of the same function, where the model returns pointer struct. As a
domain speci�c name, TIFF is not shared among enough projects to be
in our list of common type names. The predicted type is thus correct
and as precise as possible as per our type language LSW. Future work
could explore to predict information about the struct �elds as well.

7.7 summary

This chapter presents the �rst neural approach for recovering precise
types in WebAssembly binaries. In contrast to prior work on learning-
based binary type prediction, we represent types through an expres-
sive type language. The language allows for thousands of di�erent
types, instead of the 7 to 35 types considered previously. Despite this
increase of expressiveness, we �nd our type prediction model to be
highly accurate, exactly predicting 44.5% (75.2%) of all parameter types
and 57.7% (80.5%) of all return types within the top-1 (top-5) predic-
tions. SnowWhite is an important �rst step toward reverse engineer-
ing WebAssembly binaries. Beyond our technique, we share a novel
large-scale dataset of C and C++ code compiled to WebAssembly with
debug information, which is two orders of magnitude larger than ex-
isting datasets for WebAssembly.
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In this chapter, we discuss work that is closely related to this disser-
tation. Naturally, research can be related along multiple dimensions,
suggesting di�erent but equally valid ways of slicing and dicing them
into a linear structure for this chapter. We chose to categorize the re-
lated work as follows.

• Several chapters of this dissertation focus on security aspects of Web-
Assembly. Section 8.1 gives an overview of related work in this area.
The following Section 8.2 then discusses other work onWebAssembly.

• In particular Wasabi draws a lot of inspiration from established dy-
namic analysis and instrumentation tools, e.g., for native binaries and
JavaScript. We discuss those in Section 8.3.

• Studies on large bodies of code and software ecosystems (in partic-
ular the Web), are related to our work on WasmBench. We discuss
them in Section 8.4.

• In Chapter 3, we frequently compare WebAssembly and native code
with respect to software security. Section 8.5 covers existing work on
native code, both attacks and defenses.

• Fuzzing is at the heart of our Fuzzm project. Section 8.6 discusses
related work, especially on fuzzing for native code.

• Finally, in Section 8.7 we discuss related work for SnowWhite. We
discuss reverse engineering and type recovery, and neural methods for
code due to the learning-based approach.
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8.1 security aspects of webassembly

One way to categorize work on security aspects of WebAssembly is
whether the WebAssembly code is seen as malicious, and thus shall be
protected against, or as vulnerable, and thus shall itself be protected. In
the �rst category falls work on attacks against WebAssembly runtime
implementations, cryptomining, and side-channel attacks. Our work
focuses on the second category, namely vulnerable WebAssembly code
and how we can protect it from malicious inputs. We detail work in
both categories in the following.

cryptomining Among the early adopters of WebAssembly have
been websites that use the computing resources of unsuspecting vis-
itors to mine cryptocurrencies, a practice also known as cryptojack-
ing [Musch et al. 2019b; Rüth et al. 2018]. This is often unwelcome
and hence an instance of malicious usage of WebAssembly. Several ap-
proaches detect and defend against cryptojacking [Kharraz et al. 2019;
Konoth et al. 2018; W. Wang et al. 2018], e.g., by analyzing the dynam-
ically executed instruction pro�le, which can be characteristic for cer-
tain cryptographic hash functions used in the mining process. Wasabi
can be used to conveniently collect such a pro�le, as we show with the
example analysis in Listing 5.1.

A study by Musch et al. [2019a] �nds that many WebAssembly mod-
ules loaded by the top one million websites in 2019 were used for cryp-
tomining. Together with intentionally obfuscated code, malicious uses
of WebAssembly account for 50% of the samples in their dataset. In
our study in Chapter 4, we also analyze the uses for WebAssembly on
the Web. We �nd that today, cryptomining is no longer a dominating
use case, and that other (benign) uses are much more prevalent. This is
also supported by the observation of Varlioglu et al. [2020] that cryp-
tojacking subsided after Coinhive, a major provider of cryptomining
infrastructure, ceased operation. W. Wang et al. [2018] discuss limita-
tions of VirusTotal in identifying cryptomining, which may impact the
validity of our results in Section 4.3.5. However, we also perform man-
ual inspection of randomly selected binaries and compare our dataset
with the one provided by Musch et al. [2019a], both of which addition-
ally support our �ndings of Chapter 4.

other malicious uses Malicious WebAssembly binaries are also
crafted to escape browser sandboxes and gain remote code execution
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[Plaskett et al. 2018; Silvanovich 2018]. Unlike our work in Chapter 3,
those exploits attack bugs in speci�c VM implementations and fall into
the realm of host security, as discussed in Section 3.1. In contrast, we do
not aim to escape the sandbox, and our attacks assume nothing but
a standards-compliant WebAssembly VM. For example, the exploit in
Section 3.4.1 works in both Firefox and Chrome. Since we do not escape
the VM, we depend on the available imported host functions for mali-
cious actions. However, as we show with our end-to-end exploits in
Section 3.4, cross-site scripting, remote code execution, and �le writes
can still be consequences.

With untrusted, low-level code such as WebAssembly, side-channels
attacks are another cause for worry. The language and its predictable
compilation o�er increased control for an attacker, e.g., over the mem-
ory layout of program data. Genkin et al. [2018] extract cryptographic
keys by exploiting a cache timing side-channel with WebAssembly.
Maisuradze and Rossow [2018] demonstrate speculative execution at-
tacks with a WebAssembly exploit. On the defense side, Narayan, Dis-
selkoen, Moghimi, et al. [2021] propose software-only and hardware-
assisted hardening of WebAssembly VMs against speculative execution
attacks. Browser vendors also try to reduce the likelihood of successful
side-channel attacks, but a general solution is hard to come by. Firefox
has arti�cially reduced JavaScript timer precision [Wagner 2018], to
make reading the side-channel signal more noisy, but that is not a prin-
cipled defense. Chrome relies on site isolation,1 i.e., putting di�erent
websites (and thus protection domains) into separate processes [Reis
2018]. Firefox will follow suit [Gakhokidze 2021].

Finally, in recent work with collaborators [Romano, Lehmann, et al.
2022], we explore yet another malicious use case for WebAssembly,
namely obfuscation. By translating parts of JavaScript code to Web-
Assembly, e.g., control-�ow constructs, string literals, and suspicious
function calls, we can evade static malware detectors for JavaScript.
That work is not part of this dissertation.

vulnerable webassembly Two industry whitepapers show ex-
ample attacks against vulnerable WebAssembly binaries [Bergbom 2018;
McFadden et al. 2018]. Their pioneering work inspired us to investi-
gate WebAssembly binary security more thoroughly and expand this
research signi�cantly in several directions (Chapter 3).

1 https://www.chromium.org/Home/chromium-security/ssca/

https://www.chromium.org/Home/chromium-security/ssca/
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In Section 3.2, we systematically analyze how data in the source code
is mapped to linear memory by three di�erent compilers, two backends,
and two linker con�gurations, whereas previous work has only looked
at select examples from a single compiler. From our analysis we con-
clude that, fundamentally due to linear memory, WebAssembly cannot
separate static data, heap, and unmanaged stack, as guard pages like
in native binaries are unavailable. Unlike previous work, we thus show
a much larger set of attack primitives, including primitives have not
been reported for WebAssembly at all. Because linear memory has no
page protections, not even string literals are safe from modi�cation
(Section 3.3.2.3), which has not been reported before. Our end-to-end
exploits show that this can render a single call to fprintf dangerous,
even when passing only “constant” arguments. We are also the �rst to
propose stack over�ows (not to confuse with stack-based bu�er over-
�ows) as an attack primitive (Section 3.3.1.2). Prior work has hypothe-
sized that exploitation is possible, but we are the �rst to demonstrate it
in practice. One whitepaper and a blog post [Denis 2018; McFadden et
al. 2018] warn that WebAssembly binaries come with their own alloca-
tor, which is potentially not hardened. Our exploits against two di�er-
ent versions of Emscripten’s emmalloc substantiate their hypotheses.

In Section 3.5, we also perform the �rst quantitative security evalu-
ation on a set of 26 WebAssembly binaries with more than 19 million
instructions in total. A previous blog post [Foote 2018] explores that
indirect calls can be redirected to unintended functions on a single ex-
ample. We make this observation quanti�able and measure that almost
every second function can be reached via an indirect call that takes its
argument directly from linear memory. We are also the �rst to estimate
how much data resides on the unmanaged stack in linear memory (with
extended measurements on real-world binaries in Section 4.3), a rele-
vant number for estimating the risk from previously described data
overwrite primitives. Finally, we are the �rst to compare WebAssem-
bly’s type-checking of indirect calls with native CFI schemes.

webassembly for sfi As we discuss in Chapter 3, the protec-
tions inside WebAssembly’s own memory are severely limited. How-
ever, some approaches piggyback on the well-designed host security
of WebAssembly, to isolate at least some components of an application
from the rest of the system. This is a classical goal of software fault iso-
lation (SFI) [Wahbe et al. 1993]. Narayan, Disselkoen, Gar�nkel, et al.
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[2020] compile libraries that are common attack targets in browsers,
e.g., image codecs, to WebAssembly and then run the code in the Web-
Assembly VM in the browser, instead of natively. Zakai [2020] presents
a related, but slightly di�erent approach. The code that shall be pro-
tected is also compiled to WebAssembly, but then translated into C
again, statically “embedding” the WebAssembly host isolation in the
code. Finally, the resulting C code becomes part of the overall applica-
tion and is compiled with a regular compiler to native code.

8.2 other work on webassembly

Besides work on security, there are is also other related work on Web-
Assembly in general.

language and specification The �rst publication on WebAs-
sembly is of course the initial paper that introduced the language to the
academic community [Haas et al. 2017]. It is followed by a more con-
cise, updated journal version [Rossberg et al. 2018]. Both focus on the
abstract syntax, execution semantics, and type system of the language.
Fewer pages are devoted to the systems aspects, i.e., the binary format,
implementations in existing browser engines, and performance.

Going beyond the pen-and-paper formalization, Watt [2018] presents
a fully mechanized speci�cation of the WebAssembly language in Is-
abelle/HOL, including a veri�ed interpreter and a soundness proof for
the type system. His work found an error in the type system, which
was �xed before the o�cial standardization. Watt, Rao, et al. [2021]
expand this e�ort to a second mechanization in Coq.

extensions After the initial Minimum Viable Product of WebAs-
sembly and its 1.0 speci�cation [WebAssembly Speci�cation], several
language extensions have been proposed. There is an o�cial process by
the language working group for adopting proposals into the standard;
and some proposals have already been merged into the speci�cation
(see our discussion of language extensions at the end of Section 2.2).2

There are also proposal papers that do not follow this process. Those
cover more niche applications, such as statically verifying that opera-
tions have constant runtime [Watt, Renner, et al. 2019], to ensure the
absence of certain classes of side-channel attacks against cryptogra-

2 https://github.com/WebAssembly/proposals/blob/main/finished-proposals.md

https://github.com/WebAssembly/proposals/blob/main/finished-proposals.md
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phy implementations. Other proposals have wider impact, but are at an
early stage. Disselkoen et al. [2019] propose to solve some of the mem-
ory safety issues we discuss in Chapter 3 by adding managed memory
handles with de�ned (temporal) lifetime and (spatial) extent. However,
as far as we know, this has not been implemented in a major runtime
or otherwise progressed towards inclusion into the o�cial language.
We discuss other language proposals that could improve the security
of WebAssembly binaries in Section 3.6. Finally, the e�ort for adding
atomics and threads to the language is accompanied by a publication
formalizing a weak memory model for WebAssembly [Watt, Rossberg,
et al. 2019].

source languages For an overview of source languages compil-
ing to WebAssembly, we refer to the background in Section 2.3 and our
�ndings in Chapter 4. In terms of publications, Protzenko et al. [2019]
compile cryptographic libraries written in a veri�cation-oriented pro-
gramming language Low* (a subset of F*) to WebAssembly.

performance and correctness Since one use case of WebAs-
sembly are compute-intensive applications, the performance of WebAs-
sembly code and speci�c runtimes has been studied from early on. The
original publication [Haas et al. 2017] has measured runtime overhead
versus native code only on a small, uniform set of numerical bench-
marks.3 Jangda et al. [2019] compile the more diverse SPEC CPU bench-
mark suite to WebAssembly. They �nd a larger overhead than Haas et
al. [2017], at about 50% slowdown when executing WebAssembly in
Firefox and Chrome, compared with native code. In case studies, they
attribute the overhead to suboptimal compilation to native code (which
can be �xed, e.g., through improved register allocation), and to safety
checks that are inherent to WebAssembly (e.g., runtime type checking
of indirect calls). D. Herrera et al. [2018] compare the performance of
WebAssembly against native code and JavaScript on the Ostrich bench-
marks.4 For those numerical programs, WebAssembly in Firefox and
Chrome was faster than JavaScript and about as fast as native code.
The performance of our fuzzer in Chapter 6 crucially relies on the exe-
cution speed of the integrated WebAssembly VM. We build on Wasm-
time [Wasmtime Website]. It is quite young but actively developed by

3 https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
4 http://www.sable.mcgill.ca/mclab/projects/ostrich/

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://www.sable.mcgill.ca/mclab/projects/ostrich/
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Fastly and other open-source contributers. We can pro�t from future
performance improvements in the VM, as our approach is orthogonal
to them. Our instrumentation at the bytecode level is also completely
independent of speci�c (versions of) WebAssembly runtimes.

Besides studies on WebAssembly runtimes and their performance,
Romano, Liu, et al. [2021] also study bugs in compilers targeting Web-
Assembly, with one of their two studies focusing on Emscripten. They
�nd that some bugs are silent miscompilations that only manifest at
runtime, and that there are both bugs in the parts of compilers that are
unrelated to WebAssembly and bugs possibly caused by unusual Web-
Assembly features, e.g., the di�erent memory model than native code,
or the asynchronous nature of the Web.

program analysis Others have also worked on program analysis
techniques for WebAssembly, although in di�erent areas than we do. In
terms of static analyses, Stiévenart, Binkley, et al. [2022] present a back-
wards slicing algorithm for WebAssembly. To make sure the resulting
slice has the same stack typing as the original program fragment, they
introduce synthetic const and drop instructions. They evaluate their
implementation with binaries from our WasmBench dataset of Chap-
ter 4. They also work on a general-purpose static analysis framework,
called Wassail,5 but beyond a presentation abstract [Stiévenart and De
Roover 2021], there has been no full publication on it yet. The frame-
work seems to have originated from earlier work on static information
�ow analysis for WebAssembly [Stiévenart and De Roover 2020].

There are also more heavy-weight static analyses for WebAssembly.
N. He et al. [2021] present a symbolic execution framework for EOSIO
smart contracts, which are deployed as WebAssembly bytecode. Man-
ticore is another symbolic execution framework, which supports multi-
ple native architectures and WebAssembly.6 Brito et al. [2022] present
Wasmati, a static analysis tool based on code property graphs for Web-
Assembly. They build on two results from this dissertation. First, they
use one of our exploits from Section 3.4 as a motivating example in
their paper. Second, they use our WasmBench dataset (Chapter 4) for
testing the robustness of their analysis.

There are also some practical tools for statically optimizing WebAs-
sembly binaries. A standard tool that is often run as a post-processing

5 https://github.com/acieroid/wassail
6 [Hennenfent 2020], https://github.com/trailofbits/manticore

https://github.com/acieroid/wassail
https://github.com/trailofbits/manticore
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step on binaries produced with other compilers, is wasm-opt from the
Binaryen project.7 There is no publication on it, but as far as we know
from using it and inspecting its source code, it converts WebAssembly
programs to its own intermediate representation and performs classi-
cal compiler optimizations, such as inlining or common subexpression
elimination. A slightly narrower use case is covered by Twiggy,8 which
is a static code size analyzer. It lists each function with its usages and its
retained size, i.e., how much the binary could be shrunk if the function
and the then transitively dead functions were (manually) removed.

8.3 dynamic analysis and instrumentation

Wasabi in Chapter 5 relates to many works in the area of dynamic
analysis. For binaries, instrumentation is one common implementation
strategy, which we also cover here.

dynamic analysis in general Dynamic analysis [Ball 1999]
has since long been recognized as an e�ective way to complement
static analysis [Ernst 2003]. In the hierarchy of program analyses pro-
posed by Zeller [2003], our dynamic analysis with Wasabi is at the
second level, namely observing the runtime behavior of programs. This
contrasts with the lower, deductive level, where behavior is derived
purely from static analysis of the program, and with the higher level
of experimentation, where execution is actively steered towards some
(testing) goal. Fuzzm (Chapter 6) �ts the latter level in this hierarchy.

Various concrete dynamic analyses have been proposed, including
dynamic slicing [Agrawal and Horgan 1990], taint analyses for x86 bi-
naries [Newsome and Song 2005] and Android [Enck et al. 2014], an
analysis to track the origin of null and unde�ned values [Bond et al.
2007], and analyses to understand performance problems [Yu et al.
2014]. Given the increasing interest in WebAssembly, we expect an
increased demand for dynamic analyses for WebAssembly, for which
Wasabi provides a reusable platform.

dynamic analysis for the web Motivated by the dynamic fea-
tures of JavaScript, e.g., runtime loading of code, various dynamic anal-
yses for JavaScript-web applications have been presented. Such work

7 https://github.com/WebAssembly/binaryen
8 https://github.com/rustwasm/twiggy

https://github.com/WebAssembly/binaryen
https://github.com/rustwasm/twiggy
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includes analyses to �nd type inconsistencies [Pradel, Schuh, et al. 2015],
JIT-unfriendly code [Gong, Pradel, and Sen 2015], bad coding practices
[Gong, Pradel, Sridharan, et al. 2015], data races [Petrov et al. 2012], and
incorrect usage of promises [Alimadadi et al. 2018]. The survey of An-
dreasen et al. [2017] gives a broader overview. Many of these analyses
are built on top of Jalangi [Sen et al. 2013], a general-purpose dynamic
analysis framework for JavaScript. Because there was no comparable
tool for WebAssembly, we aimed to �ll this gap with Wasabi.

dynamic analysis of webassembly Even though there was
no dynamic analysis framework for WebAssembly, several manually
written approaches had already been implemented when we started
our work on Wasabi. There are two dynamic taint analyses [W. Fu et
al. 2018; Szanto et al. 2018] and a cryptomining detector [W. Wang et
al. 2018]. They are implemented by modifying the V8 engine [W. Fu et
al. 2018], by implementing a simple WebAssembly interpreter in Java-
Script [Szanto et al. 2018], and through custom binary instrumentation
[W. Wang et al. 2018], respectively. Our evaluation in Chapter 5 shows
that these analyses and others can be implemented on top of Wasabi
with signi�cantly less e�ort. These handwritten analyses also highlight
that there is a real need for a general-purpose framework that abstracts
away the low-level details of implementing a dynamic analysis.

binary instrumentation Binary instrumentation has been a
popular strategy to implement dynamic analyses in the past. Often
used tools for x86 binaries include DynamoRIO [Bruening et al. 2003],
Pin [Luk et al. 2005], andValgrind [Nethercote and Seward 2007], which
have provided inspiration for Wasabi. These tools instrument bina-
ries at runtime by translating basic blocks just before their execution,
and by storing translations in a code cache. E�ectively, those are just-
in-time compilers for native code. This is necessary, because reliable
static disassembly for native code is hard [Andriesse et al. 2016]. In
contrast, Wasabi instruments binaries statically, i.e., ahead of the ana-
lysis, which avoids any instrumentation overhead during execution.
Wasabi also di�ers with respect to the API it provides to analysis au-
thors: While DynamoRIO provides an API to manipulate instructions,
Wasabi provides an API to observe the execution of instructions. Anal-
yses written for Pin can specify “instrumentation routines”, which de-
termine where to place calls to analysis routines. Instead, Wasabi se-
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lects which kinds of instructions to instrument based on the hooks re-
quired for an analysis. Umbra [Zhao et al. 2010] is a dynamic binary in-
strumentation tool that focuses on e�cient memory shadowing. In con-
trast, Wasabi provides a general-purpose framework for arbitrary dy-
namic analysis, including memory shadowing. A di�erence compared
to all the above tools is that in Wasabi, the dynamic analysis is writ-
ten and executed in a high-level language, JavaScript, instead of be-
ing compiled to binary code. The rationale is that JavaScript is already
very popular on the Web, making it easier for analysis authors to adopt
Wasabi.

8.4 studies of code and ecosystems

Our work on WasmBench in Chapter 4 is related to the other studies
of code. One important subset are studies of the Web, as a large part of
our dataset comes from crawling live websites and because the Web is
a major host environment for WebAssembly.

webassembly The most closely related work to our study in Chap-
ter 4 is by Musch et al. [2019a]. They systematically collect WebAs-
sembly from the Web and report cryptomining to be one of its prime
use cases in 2019. Our work in WasmBench extends their �ndings in
several ways: First, we consider a wider range of sources to gather bi-
naries, not just the Web, but also package managers, Firefox extensions,
source code repositories, and manually collected samples. This results
in 58 times more binaries in our study. Second, we show that other ap-
plications than cryptomining have become much more prevalent for
WebAssembly (see also Section 8.1). Third, we study several properties
of WebAssembly not considered before, e.g., source languages, com-
mon toolchains, and security properties such as potentially dangerous
imported functions.

One motivation for WasmBench was to serve as a realistic test set
for tools processing WebAssembly binaries. We ourselves have used
binaries from it for testing in Section 6.5. In less than a year also other
researchers used WasmBench, e.g., Brito et al. [2022] and Stiévenart,
Binkley, et al. [2022] evaluate their tools on our dataset. Besides test-
ing, Brito et al. [2022] also apply their vulnerability scanner on our
dataset, searching with hand-written queries for problematic patterns.



8.4 studies of code and ecosystems 197

One such pattern is the usage of deprecated C functions, e.g., gets or
strcat, of which they �nd more than 150 uses.

Before WasmBench, there was no large dataset of realistic WebAs-
sembly binaries. E.g., for testing Wasabi during development in 2018,
we relied on a small set of hand-picked applications and the WebAssem-
bly spec test suite. For their analysis of WebAssembly code generation,
Jangda et al. [2019] use the SPEC CPU suite. We do so as well in Sec-
tion 3.5. One limitation of our WasmBench dataset is that it only con-
tains the WebAssembly binaries, but no surrounding JavaScript code
or test inputs. That makes it di�cult to apply in dynamic testing.

studies of the web and javascript Beyond WebAssembly,
other related studies investigate JavaScript code bases and web security.
Richards et al. [2011] analyze the usage of eval in JavaScript, which
is discouraged because it can add (potentially malicious) code at run-
time. We analyze how often it and similarly dangerous functions are
imported into WebAssembly binaries in Section 4.3.4.3. Skolka et al.
[2019] study how frequent mini�ed and obfuscated code is on the Web.
This relates to Section 4.3.7, where we look into whether useful names
are present in WebAssembly binaries. Other studies of the JavaScript
ecosystem are on outdated libraries in the Web [Lauinger et al. 2017],
implicit type conversions in JavaScript code [Pradel, Schuh, et al. 2015],
regular expression Denial of Service vulnerabilities in JavaScript-based
web servers [Staicu and Pradel 2018], cross-site scripting vulnerabilities
[Melicher et al. 2018], and how large amounts of code sharing can make
JavaScript applications more vulnerable [Zimmermann et al. 2019]. In-
spired by all that work, Chapter 4 �lls in gaps in the existing knowledge
about security properties of real-world WebAssembly.

Parts of our methodology in Section 4.2 were inspired by the follow-
ing two works. First, unlike other crawling-based studies, we do not
rely on the Alexa list of the top one million websites. One reason is
that its latest version is no longer publicly available, and an older ver-
sion might not re�ect the latest state of the Web. Another reason is
that it has been found prone to manipulation [Pochat et al. 2019]. We
instead use the Tranco list as a seed list for our crawling.9 Second, we re-
alize that starting web crawling from top-level domains is causing only
shallow exploration, which is unlikely (in our case) to �nd many Web-
Assembly binaries. Instead, the survey of the Web Almanac [Goel 2021]

9 https://tranco-list.eu/

https://tranco-list.eu/
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is based on more extensive inputs, e.g., URL lists from the Chrome User
Experience Report and large-scale crawled data from the HTTP Archive
(which we cannot match by crawling ourselves with limited comput-
ing resources). Hence, we also integrate those sources in Section 4.2
for the Web portion of our dataset.

8.5 security of native software

Our work in Sections 3 and 6 draws a lot of parallels to the security of
native software. We give a short overview of attacks and defenses in
that area in the following.

attacks There exists ample work on binary exploitation; Szekeres
et al. [2013] provide an excellent overview of techniques for exploit-
ing memory vulnerabilities. In particular, their Figure 1 inspired us
to create a WebAssembly-speci�c overview of attacks and defenses in
Chapter 3, Figure 3.1. Their stages 1 to 3 correspond to our �rst attack
primitive dimension (overwriting data), techniques from stage 4 (ran-
domization such as ASLR) do not exist in WebAssembly, and stages 5
and 6 correspond to our third attack primitive dimension (triggering
security-compromising behavior). Overall, we �nd that, although con-
crete exploits have to be adapted and e�ects depend on the runtime en-
vironment, many techniques that are e�ective in native binaries also
transfer to WebAssembly. This is even true for long known attacks,
such as simple stack-based bu�er over�ows [Aleph One 1996] and at-
tacks on allocator metadata [Anonymous 2001; Kaempf 2001].

exploit mitigations Because it is hard to comprehensively �x
the underlying memory vulnerabilities in all legacy code out there, and
rewriting in safer languages is even harder, many exploit mitigations
have been developed. Those do not prevent the memory error itself,
but try to limit its consequences for the system. They include data ex-
ecution prevention (DEP) [Andersen and Abella 2004], stack canaries
[Cowan et al. 1998], address-space layout randomization (ASLR) [PaX
Team 2002], and safe unlinking in allocators. Their applicability to
WebAssembly is a mixed bag. DEP is truly not necessary, because data
is not executable by design (Section 2.2). ASLR would be of arguable
use for WebAssembly, as 32 bit addresses do not provide enough en-
tropy for e�ective randomization [Shacham et al. 2004]. However, we
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�nd stack canaries and safe unlinking to be missing in WebAssembly,
unjusti�ably so.

control-flow integrity In recent years, di�erent variants of
control-�ow integrity [Abadi et al. 2005] have been proposed as an-
other defense for native binaries. We discuss the high-level idea and
how it relates to WebAssembly’s type checking of indirect calls in Sec-
tion 3.5.4. Burow et al. [2017] provide a survey assessing the security
of di�erent native CFI implementations. We empirically compare with
some of their results and �nd that type checking of indirect calls in
WebAssembly is not as restrictive as dedicated CFI enforcement. In par-
ticular, low-level WebAssembly types are much more cross-compatible
than source-level types. The latter are used in compiler-inserted CFI de-
fenses, such as GCC’s VTV (vtable veri�cation) or LLVM’s CFI [Tice et
al. 2014]. One upside of WebAssembly is however that return addresses
are managed by the VM, which provides the same level of security as
a shadow stack does for native code.

binary rewriting and overflow protection Our Fuzzm
project relies on adding oracles by statically rewriting WebAssembly bi-
naries before fuzzing them (Section 6.3). We compare to similar rewrit-
ing techniques for native binaries in the following. Statically instru-
menting native binaries is challenging due to mixed code and data,
di�cult function identi�cation [Andriesse et al. 2016], and even un-
decidable disassembly in the general case [Wartell et al. 2011]. Many
rewriting approaches for native binaries thus rely on metadata being
available, e.g., debug information, relocations, or position-independent
code [X. Chen et al. 2015; Dinesh et al. 2020; Slowinski et al. 2012]. With-
out it, one has to resort to tricks, such as instruction punning [Duck
et al. 2020], which do not achieve full coverage of all instructions ei-
ther. WebAssembly can be disassembled reliably and thus does not suf-
fer from these problems. However, WebAssembly instrumentation in
Fuzzm poses also new challenges, such as handling relative branch
target labels or multiple function returns.

Several papers have presented binary rewriting techniques for pro-
tecting the stack in x86 programs. Early work by Prasad and Chiueh
[2003] uses a shadow stack approach that duplicates return addresses
into a second location. BodyArmor inserts instrumentation that moni-
tors reads and writes relative to pointers [Slowinski et al. 2012]. StackAr-
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mor combines a randomized layout, isolation, and secure allocation
for hardening binaries against stack-based vulnerabilities [X. Chen et
al. 2015]. RetroWrite [Dinesh et al. 2020] uses an over�ow detection
mechanism similar to AddressSanitizer [Serebryany et al. 2012], i.e., us-
ing shadow memory to mark bytes that may not be accessed and in-
strumenting memory accesses. Unlike the compiler-based AddressSan-
itizer, their approach only detects over�ows at the granularity of stack
frames and heap objects. This is equally true for Fuzzm.

There has also been work on protecting binaries against heap over-
�ows. Robertson et al. [2003] and Nikiforakis et al. [2013] both present
techniques that, like the Fuzzm heap canaries, instrument the alloca-
tion and deallocation functions such that they insert canaries. Niki-
forakis et al. check the canaries at system calls, which means it is likely
that over�ows are detected early, but at the cost of having to check the
canaries often. We instead opted for the more e�cient option of check-
ing canaries during deallocation, which is more appropriate for our
fuzzing and hardening use cases.

8.6 fuzzing

We now discuss related work in the area of fuzzing, and contrast it with
Fuzzm, our binary-only greybox fuzzer for WebAssembly presented in
Chapter 6.

fuzzing webassembly There is one early prototype for fuzzing
WebAssembly programs that is most closely related to our work.10 Their
approach is based on libFuzzer,11 which implies several di�erences to
our work. First, to be able to integrate libFuzzer into an application,
they require modifying the source code, whereas Fuzzm is binary-only.
Also, the coverage information in their case is obtained through com-
piler instrumentation, whereas our instrumentation is applied to bina-
ries and thus compiler independent. Finally, in their approach the input
generation code is compiled into the application, and thus is executed
in the WebAssembly VM as well, whereas our input generation is run
in native code (namely that of AFL) and only the target binary and
coverage instrumentation is run in a VM.

10 https://github.com/jonathanmetzman/wasm-fuzzing-demo
11 https://llvm.org/docs/LibFuzzer.html

https://github.com/jonathanmetzman/wasm-fuzzing-demo
https://llvm.org/docs/LibFuzzer.html
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Fuzzing has also been used for testing WebAssembly VMs,12 which
is orthogonal to fuzzing WebAssembly programs. In that scenario, the
fuzzer generates WebAssembly programs hoping to trigger bugs in the
parser, compiler, and optimizations of the virtual machine, not bugs in
the WebAssembly applications themselves.

afl and other fuzzers Out of the many approaches for greybox
fuzzing [P. Chen and H. Chen 2018; Manès et al. 2021; Mathis, Gopinath,
Mera, et al. 2019; P. Srivastava and Payer 2021], we build Fuzzm on
the popular AFL fuzzer.13 Unlike its commonly used GCC and LLVM
modes and the majority of other fuzzers [Manès et al. 2021], we do not
require source code, and do not rely on compiler-added oracles [Öster-
lund et al. 2020; Serebryany et al. 2012]. Instead, due to a multitude
of source languages compiling to WebAssembly, an e�ective fuzzer for
WebAssembly must operate on binaries only. As we demonstrate in the
motivating example in Section 6.2, the security properties of a native
binary compiled from the same source code can di�er from the cor-
responding WebAssembly binary, necessitating fuzzing WebAssembly
binaries, and not their native counterparts. Improvements to AFL’s in-
put generation, e.g., improved power schedules and many other works
[Böhme et al. 2020; A. Herrera et al. 2021; Lemieux and Sen 2018; D.
Maier et al. 2020; Mathis, Gopinath, and Zeller 2020], are orthogonal
to our work and could be integrated into Fuzzm in the future.

binary-only fuzzing There are several approaches to fuzz na-
tive binaries [Choi et al. 2019; Dinesh et al. 2020; Nagy et al. 2021].
Some rely on QEMU, DynInst, or Pin [Choi et al. 2019; Li et al. 2017;
Rawat et al. 2017], i.e., dynamic instrumentation, which can incur a
substantial runtime overhead. We instead do reliable, static instrumen-
tation of WebAssembly binaries directly, which does not have this cost.
Dinesh et al. [2020] propose static instrumentation of x86-64 binaries
for fuzzing, but they cannot handle WebAssembly binaries due to the
di�erent architecture. Other recent work is about binary instrumen-
tation for coverage [Nagy et al. 2021], but does not provide an oracle
instrumentation similar to ours, and is limited to x86-64 again. Finally,
Y. Chen et al. [2019] use special hardware support in Intel CPUs to re-
cover AFL-compatible instrumentation directly from a binary. As Web-

12 Wasmer: https://github.com/wasmerio/wasmer/tree/master/fuzz and Wasmtime:
https://github.com/bytecodealliance/wasmtime/tree/main/fuzz

13 https://github.com/google/AFL, https://lcamtuf.coredump.cx/afl/

https://github.com/wasmerio/wasmer/tree/master/fuzz
https://github.com/bytecodealliance/wasmtime/tree/main/fuzz
https://github.com/google/AFL
https://lcamtuf.coredump.cx/afl/
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Assembly binaries are run on many di�erent hardware architectures,
it does not apply to our use case. To the best of our knowledge, Fuzzm
is the �rst binary-only fuzzer for WebAssembly binaries.

evaluation and benchmarks Klees et al. [2018] outline com-
mon issues in previous evaluations of fuzzers. For example, they show
that the amount of crashes detected across two runs of the same fuzzer
with the same seed may vary drastically, yet many evaluations do not
include repeated runs of the experiments. We follow their recommen-
dations on fuzzer evaluation, e.g., by fuzzing repeatedly for 24 hours
and reporting means and con�dence intervals.

Finally, there are several benchmark programs to evaluate fuzzers
on. LAVA-M [Dolan-Gavitt et al. 2016] is one such benchmark suite,
where arti�cial bugs are inserted into simple UNIX utilities. It is a very
common benchmark, but is also criticized for not being representative
of real bugs, e.g., because the bugs are guarded by unrealistic compar-
isons. This causes fuzzers to over�t onto such types of bugs. A more
up-to-date fuzzer benchmark suite is Magma [Hazimeh et al. 2020]. It
consists of 7 programs with 118 bugs, where known triggering inputs
were available only for 45% of all bugs when the paper was written. Un-
fortunately, all programs in Magma use features that were not (yet) sup-
ported by WebAssembly when we evaluated Fuzzm, e.g., setjmp. For
that reason, we use three types of benchmarks for evaluating Fuzzm:
3 LAVA-M programs, 7 real-world programs with known vulnerabili-
ties, and 17 binaries from our WasmBench dataset without access to
their source code.

8.7 (neural) reverse engineering

Finally, we discuss related work for SnowWhite, which we introduce
in Chapter 7. We discuss reverse engineering and type recovery ap-
proaches, also for native code. As SnowWhite uses a neural network
for prediction, it also relates to the larger �eld of machine learning ap-
plied to code.

type recovery Recovering types from binaries has received sig-
ni�cant attention, mostly for x86 binaries. Several approaches aim to
recover class hierarchies [Katz, Rinetzky, et al. 2018; Pawlowski et al.
2017] and other kinds of type information [ElWazeer et al. 2013; Katz,
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El-Yaniv, et al. 2016; Lee et al. 2011; Mycroft 1999; Noonan et al. 2016],
e.g., function types and variable types of varying precision. Caballero
and Lin [2016] provide a good overview of approaches until 2016. An
elaborate type inference approach for binaries is by Noonan et al. [2016].
They can recover very expressive types, with features such as struct
�elds, polymorphic functions, and recursive types. This makes their
types more expressive than our language. However, as a classical, not
learning-based approach, their implementation also comes with signi�-
cant complexity and is tied to an underlying binary analysis framework.
In contrast, our pipeline requires basic disassembly of the binary, as
the program representation for the neural network is essentially just
a sequence of tokens. On a technical level, their approach also cannot
handle WebAssembly binaries.

More recently, several data-driven and learning-based type recovery
approaches have been proposed [Chua et al. 2017; J. He et al. 2018;
A. Maier et al. 2019; Pei et al. 2021]. Those are most closely related
to our SnowWhite work. Learning-based approaches have several
advantages over classical algorithms. For example, learning-based ap-
proaches can take statistical patterns into account that are not easily
expressed as logical constraints. Non learning-based approaches also
often rely on manually tuned heuristics or handwritten rules for cer-
tain functions, which is laborious and brittle. We compare the four
prior learning-based approaches against each other and against our
approach in terms of the set of types that can be predicted. Section 7.3
goes into detail and Table 7.1 gives an overview of the di�erent type
language features supported. Section 7.6.2 compares di�erent metrics
for a subset of those languages.

reverse engineering Beyond types, other information can also
be predicted from a binary to support reverse engineering. DIRE [La-
comis et al. 2019] and Nero [David et al. 2020] are neural models to
predict names of variables and functions, respectively. Coda [C. Fu et
al. 2019] is a trained model that predicts an AST for code given in a sim-
ple assembly language. For WebAssembly speci�cally, wasm-decompile
and wasm2c from the o�cial WebAssembly Binary Toolkit (WABT)14

aim to decompile binaries to more readable pseudocode or proper C,
respectively. All the above tools and techniques are complementary to
recovering types.

14 https://github.com/WebAssembly/wabt

https://github.com/WebAssembly/wabt
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To the best of our knowledge, no prior work addresses the prob-
lem of recovering precise, high-level types in WebAssembly binaries.
In particular, wasm2c, despite the name, does not recover high-level
source types. Instead, the low-level WebAssembly types in the binary
are merely translated to matching C typedefs. That is, a variable with
WebAssembly type i32 would be translated to a number type, such as
uint32_t in C, regardless of whether the variable might actually hold a
pointer (which is not a separate low-level type in WebAssembly, it just
coincides with i32, as we discuss in Section 2.2).

type prediction for source languages Besides recovering
types to help with reverse engineering of binaries, types can also be
predicted at the level of source code. In particular dynamically typed
languages can bene�t from type prediction, e.g., to automatically add
optional type annotations. There are several approaches for JavaScript
[Hellendoorn, Bird, et al. 2018; Malik et al. 2019; Raychev et al. 2015;
Wei et al. 2020], Python [Allamanis, Barr, et al. 2020; Pradel, Gousios,
et al. 2020; Z. Xu et al. 2016], and Ruby [Kazerounian et al. 2020]. Most
of them focus on how to represent and process the input to a predic-
tion model, e.g., with a recurrent neural network (RNN) over a token
sequence [Hellendoorn, Bird, et al. 2018] or a graph neural network
(GNN) over a graph representation of the code [Wei et al. 2020]. Type-
Writer [Pradel, Gousios, et al. 2020] combines neural type prediction
and type checking-based validation to make sure the produced annota-
tions are type-correct. Almost all of the above approaches predict types
from a �xed set, except for Typilus [Allamanis, Barr, et al. 2020], which
represents types as points in a continuous type space. SnowWhite dif-
fers from them by representing types as sentences in a type language,
which turns type prediction into a sequence prediction task.

neural models of code Deep learning on code is receiving sig-
ni�cant interest [Pradel and Chandra 2021] beyond the work discussed
above. One important question is how to represent a piece of code, e.g.,
using AST paths [Alon, Zilberstein, et al. 2019], control �ow graphs
[Y. Wang et al. 2020], abstract syntax trees [J. Zhang et al. 2019], or as
a combination of token sequences and a graph representation of code
[Hellendoorn, Sutton, et al. 2020]. Instead of the input representation,
our work on SnowWhite focuses on how to represent the type output
of a predictive model.



8.7 (neural) reverse engineering 205

Other applications for neural models in software engineering are in
the area of code changes [Brody et al. 2020; Hoang et al. 2020] and pro-
gram repair [Dinella et al. 2020; Gupta et al. 2017], to complete partial
code [Alon, Brody, et al. 2019; Kim et al. 2021], or bug detection [Pradel
and Sen 2018].





9 C O N C L U S I O N S A N D O U T L O O K

In this �nal chapter, we recapitulate the high-level contributions of the
dissertation and look into possible future research directions.

9.1 summary of contributions

As we set out in Section 1.3, this dissertation focuses on program ana-
lysis of WebAssembly binaries. It provides novel insights, datasets, and
techniques to support developers in their practical problems around un-
derstanding, optimizing, and improving the security and reliability of
WebAssembly applications. Concretely, this dissertation describes our
work on the following �ve research projects:

binary security In Chapter 3, we analyze the WebAssembly lan-
guage, in particular linear memory, and the (lack of) mitigations in the
ecosystem. We �nd that WebAssembly binaries can be exploited, some-
times even more easily than native binaries compiled from the same
source code. Our main insights are that the sole focus on host secu-
rity is not enough, and that there is perhaps a surprising lack of binary
security in WebAssembly. We are the �rst to comprehensively analyze
this understudied aspect of WebAssembly security. We demonstrate its
severity with proof-of-concept exploits on di�erent platforms, as well
as measurements on real-world binaries. To remedy the situation, we
also discuss mitigations at di�erent levels of the stack, from changing
the language to direct advice to developers.

wasmbench Chapter 4 presents WasmBench, our dataset and em-
pirical study of 8,461 unique WebAssembly binaries. It is the largest
dataset of real-world WebAssembly binaries to date, which we collect
from a wide range of sources, including package managers, code repos-
itories, and live websites. Our analysis provides several insights, for
example, that most WebAssembly binaries are compiled from memory-
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unsafe languages, and that WebAssembly has a diverse set of use cases
on the Web, overhauling previous warnings that the language is mainly
used for cryptomining. We also use binaries from the dataset for test-
ing the binary instrumentation implementation in Chapter 6 and have
already seen it being used by other researchers (Section 8.4).

wasabi Chapter 5 provides very practical support for developers
with Wasabi, our general-purpose dynamic analysis framework. It is
the �rst of its kind for WebAssembly. Its high-level, hook-based Java-
Script API simpli�es writing dynamic analyses and its static binary in-
strumentation is easier to maintain than ad-hoc binary patching or
modifying a WebAssembly runtime. To solve WebAssembly-speci�c
instrumentation challenges, we devise novel techniques, such as on-
demand monomorphization of inserted analysis hooks. Wasabi can
reliably and e�ciently instrument and analyze complex WebAssembly
binaries with millions of instructions.

fuzzm In Chapter 6, we introduce Fuzzm, the �rst binary-only grey-
box fuzzer for WebAssembly. It addresses some of the previously uncov-
ered security issues by �nding and mitigating memory errors in Web-
Assembly binaries. The lack of built-in oracles, such as guard pages,
is met by a binary instrumentation technique that adds heap and stack
canaries to WebAssembly binaries. Fuzzm also integrates a WebAssem-
bly VM with AFL and the �rst AFL-compatible coverage instrumenta-
tion for WebAssembly binaries. Besides as oracles for the fuzzer, our
canary instrumentation can also be used to retroactively harden pro-
duction binaries against runtime attacks.

snowwhite Finally, Chapter 7 presents SnowWhite, our neural
approach for recovering high-level types from WebAssembly binaries.
It helps developers and reverse engineers to understand this new low-
level code format. It is the �rst learning-based type prediction approach,
for any binary format, to feature an expressive type language and for-
mulate the problem as a sequence prediction task. To train the model,
we also collect the largest dataset of WebAssembly binaries with de-
bugging information to date.

In summary, the projects in this dissertation show that WebAssembly
binaries can be reliably and e�ciently analyzed and instrumented. We
have made our results, datasets, and tools publicly available (see Sec-
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tion 1.6), to foster independent replication and in the hope that others
can build on them in future work.

9.2 future work

With our work, we not only answer, but also uncover many more ques-
tions to investigate in future work. We begin with concrete improve-
ments for the research projects presented earlier, and conclude with
more open-ended ideas.

language extensions Our tool implementations of Chapters 5
and 6 currently only handle WebAssembly binaries using the initial ver-
sion of the language. While this is su�cient for most binaries found in
the wild, over time more will be using language extensions, e.g., SIMD
instructions for improved performance. Beyond the relatively straight-
forward engineering required for extending the binary parser, some
extensions may also introduce more fundamental research challenges.
E.g., the threading proposal introduces shared memory and atomics,1
which may raise questions with regard to correct concurrent code.

neural decompilation Our work in Chapter 7 on recovering
high-level types from binaries addresses only one of many problems
in reverse engineering. Neural networks might also be able to recover
other types of source-level information from binaries that are lost dur-
ing compilation. Given our large dataset of WebAssembly binaries with
debug information, we could train neural models to automatically name
functions and variables, or to recover idiomatic control-�ow, e.g., de-
ciding between for and while loops.

static analysis On the one hand, WebAssembly is comparatively
well-behaved for a binary format, e.g., disassembly is easy, reliable, and
fast. This could enable more robust static analysis of WebAssembly bi-
naries compared to native code. On the other hand, WebAssembly is
much more low-level than, for example, Java bytecode. Without man-
aged objects or a class hierarchy, many static analysis problems for
WebAssembly are still tough nuts to crack, such as precise static call
graph construction or points-to-analysis.

1 https://github.com/WebAssembly/threads

https://github.com/WebAssembly/threads
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webassembly for sfi Chapter 3 shows that WebAssembly’s lin-
ear memory leaves a lot to be desired in terms of protecting the memory
of vulnerable WebAssembly programs. However, the host boundary de-
�ned by the language is solid, suggesting WebAssembly as a technol-
ogy for software fault isolation (SFI). Narayan, Disselkoen, Gar�nkel,
et al. [2020] sandbox vulnerable libraries in Firefox in this manner. An
interesting future direction is to use WebAssembly for SFI in applica-
tions that do not have a WebAssembly VM built-in, e.g., through ahead-
of-time compilation.

universal bytecode Finally, we venture an outlook further into
the future. If proponents of WebAssembly are correct, WebAssembly
has the potential to become a universal bytecode, not just for web appli-
cations, but for portable, performant software in general. If this vision
becomes a reality, the actual underlying hardware architecture will be-
come more and more irrelevant for software developers and consumers
alike. Conversely, there will be many new avenues for further research,
e.g., optimizations on the level of WebAssembly bytecode, compilation
to e�cient native code, and cross-language interoperability.
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