
Differential Regression Testing for REST APIs
Patrice Godefroid
Microsoft Research

United States
pg@microsoft.com

Daniel Lehmann∗
University of Stuttgart

Germany
mail@dlehmann.eu

Marina Polishchuk
Microsoft Research

United States
marinapo@microsoft.com

ABSTRACT
Cloud services are programmatically accessed through REST APIs.
Since REST APIs are constantly evolving, an important problem is
how to prevent breaking changes of APIs, while supporting several
different versions. To find such breaking changes in an automated
way, we introduce differential regression testing for REST APIs. Our
approach is based on two observations. First, breaking changes in
REST APIs involve two software components, namely the client
and the service. As such, there are also two types of regressions:
regressions in the API specification, i.e., in the contract between
the client and the service, and regressions in the service itself, i.e.,
previously working requests are “broken” in later versions of the
service. Finding both kinds of regressions involves testing along two
dimensions: when the service changes and when the specification
changes. Second, to detect such bugs automatically, we employ
differential testing. That is, we compare the behavior of different
versions on the same inputs against each other, and find regressions
in the observed differences. For generating inputs (sequences of
HTTP requests) to services, we use RESTler, a stateful fuzzer for
REST APIs. Comparing the outputs (HTTP responses) of a cloud
service involves several challenges, like abstracting over minor
differences, handling out-of-order requests, and non-determinism.
Differential regression testing across 17 different versions of the
widely-used Azure networking APIs deployed between 2016 and
2019 detected 14 regressions in total, 5 of those in the official API
specifications and 9 regressions in the services themselves.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Correctness; • Networks → Cloud computing.

KEYWORDS
REST APIs, differential regression testing, service regression, speci-
fication regression, client/service version matrix
ACM Reference Format:
Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differ-
ential Regression Testing for REST APIs. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

∗The work of this author was mostly done at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397374

’20), July 18–22, 2020, Los Angeles/Virtual, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3395363.3397374

1 INTRODUCTION
Cloud computing is exploding. Today, most cloud services, such as
those provided by Amazon Web Services (AWS) [8] and Microsoft
Azure [37], are programmatically accessed through REST APIs [21],
both by third-party applications [7] and other services [40]. Since
cloud services and their REST APIs are constantly evolving, break-
ing changes between different versions of a particular API are a
major problem [19, 30]. For instance, a recent study of 112 “high-
severity Azure production incidents caused by software-bugs” points
out that in many cases “these bugs are triggered by software up-
dates” [32]. Our paper discusses a fundamental software-engineering
problem: How to find such regressions effectively through automatic
testing for cloud services with published APIs?

Today, there are two main techniques to detect regressions when
updating a REST API. First, testing before deploying a new API
version is used to send hand-written or previously-recorded re-
quests to the new service and check for specific responses. This is a
laborious task, even though supported by a variety of commercial
testing tools [2–5]. Checking the new specification is often even
less automated and more incomplete, e.g., if only done by visual
inspection. The second technique, especially for critical services,
is to roll-out in a staged manner, e.g., starting with early-adopter
deployments, then to select regions or datacenters, and then to all
regions of a public cloud. Service traffic is constantly monitored
and if clients stop working, errors will appear in traffic logs, and
customers will complain. But catching regressions after rolling out
a new service version is painful and expensive because incident
management involves complex tasks (incident triage, prioritization,
root-cause analysis, remediation, bug fixes, rolling-out patches, etc.)
and disrupts engineers both on the service-provider side and on
the customer side. Customer-visible regressions reduce customer
satisfaction, and may also have direct financial impact when SLAs
(Service Level Agreements) are broken.

This paper introduces differential regression testing for REST APIs
as an automated technique to detect breaking changes across API
versions. A first key observation is that breaking changes in REST
APIs involve two software components, namely the client and the
service. As such, we observe that there are also two types of re-
gressions: regressions in the API specification, i.e., in the contract
between the client and the service, and regressions in the service
itself, i.e., previously valid requests stop working in later versions
of the service. Finding both kinds of regressions involves testing
along two dimensions: when the service changes and when new
clients are derived from the changed specification.

A second key idea is to use differential testing to detect spec-
ification and service regressions automatically. We compare the

https://doi.org/10.1145/3395363.3397374
https://doi.org/10.1145/3395363.3397374

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk

behavior of different versions of client-service pairs, and find regres-
sions in the observed differences. Making this approach practical
involves overcoming several technical challenges. Given N API
versions, there are N 2 client-service pairs, and N 4 ways to com-
pare them with each other. Fortunately, we show that not all these
combinations need be considered in practice. We also discuss how
to compare the outputs (HTTP responses) of a cloud service that
contain non-determinism, and how to handle out-of-order or newly
appearing requests when updating the specification.

To evaluate the effectiveness of differential regression testing,
we present a detailed historical analysis of 17 versions of Microsoft
Azure networking APIs deployed between 2016 and 2019. All their
API specifications are publicly available on GitHub [36], and all
17 service versions are still accessible to anyone with an Azure
subscription. Our approach and tools detected 5 regressions in the
official specifications and 9 regressions in the services themselves.
We also discuss how these regressions were fixed in subsequent
versions.

The main contributions of this paper are:
• We introduce differential regression testing for REST APIs,
including the key notions of service and specification regres-
sions. We discuss the computational complexity of finding
such regressions across N API versions.

• We discuss how to effectively detect service and specification
regressions by comparing network logs capturing REST API
traffic, using stateful and stateless diffing techniques.

• We present a detailed API history analysis for Microsoft
Azure Networking, a widely-used core Azure service com-
posed of more than 30 APIs. We found 14 regressions across
17 versions of those APIs deployed between 2016 and 2019.

2 DIFFERENTIAL REGRESSION TESTING FOR
REST APIS

2.1 Regression Testing and Differential Testing
Before we describe our approach for differential regression testing
for REST APIs, we define here some common terminology used
throughout the remainder of the paper.

A regression in a program is a bug which causes a feature that
worked correctly to stop working after a certain event, such as a
software update. An update is the process of changing the program
from an old version n to a new version n + 1. Regressions are also
called breaking changes. The notion of breaking change only makes
sense when the software versions before and after the update are in
a compatibility relation with each other. Major versions in semantic
versioning [42] are the canonical example of versions without a
compatibility relation, i.e., which allow breaking changes by design
(and thus should occur as little as possible). We only test versions
that are in a compatibility relation with each other. Usually, those
allow for backwards-compatible changes: New functionality may
be added, but program inputs that “worked correctly” should still
behave the same, if given to the new version.

Regression testing typically consists of running manually written
and over-the-years accumulated test cases that check that the new
program does not crash and that assertions specified in the program
or in the test harness are not violated. Note that (classical) regression
testing does not involve any comparison of program outputs with

Output A

Output B

Program

Version n

Input ?
=

Equal /

Regression

Program

Version n+1

Generate

for Version n Program Update

Figure 1: Differential regression testing for programs.

Response

Response

Service

Version n

Requests for

Version n

?
=

Equal /

Regression

Service

Version n+1

Requests for

Version n+1

Specification

Version n

Specification

Version n+1

1) Service Update2) Specification Update

Specification

Version n

Specification

Version n+1

Client

Version n

Client

Version n+1

Figure 2: Differential regression testing for REST APIs in-
volves two versions – for the specification and the service.

outputs from another run: each test of a regression test suite either
passes or fails, and any failure indicates a potential regression
(assuming all tests pass in the previous version).

Differential testing means comparing the outputs of two differ-
ent, but related programs on the same input [34]. This notion is
independent of the notion of regression testing. Differential testing
is a generic method to obtain a test oracle [13] in automatic testing,
i.e., to decide for generated inputs, whether the output of the pro-
gram under test is correct. For instance, differential testing can be
used to find bugs in compilers by compiling randomly-generated C
programs using different compilers (e.g., clang and gcc), and then
comparing the runtime behavior of the binaries produced by each
compiler against each other [48].

Differential regression testing uses differential testing to automat-
ically find regressions, and has been applied previously to “tradi-
tional” programs, e.g., compilers [25]. For it to work, one needs two
backwards-compatible versions n and n + 1 of the program under
test and an input generator for said program. Differential regression
testing then consists of the following steps, illustrated in Figure 1:
both program versions n and n + 1 are executed with the same,
generated input valid for program n; if the new version produces an
output different from the previous version, a potential regression
has been detected. We use differential regression testing for REST
APIs. Below, we describe a crucial difference between traditional
programs and REST APIs that presents additional challenges for
differential regression testing.

2.2 Updates in REST APIs
A REST API is not a traditional program because it defines an inter-
face between two software components: a client, which produces
requests, and a service, which handles these requests and returns
responses. Thus, while in traditional regression testing only a single
program is updated, in the context of REST APIs, both the service
and the clients are updated over time.

The contract between clients and the service is the API spec-
ification. It defines which requests clients may send, e.g., which
HTTP methods (GET, PUT, etc.) are available for each endpoint (URI)
and what is allowed in requests and responses. A common format
for such specifications is Swagger (also known as OpenAPI) [46].

Differential Regression Testing for REST APIs ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

Developers write client code mostly based on this specification
since the service itself is usually a black box (e.g., for commercial
services, source code is not available). Given that the specification
is authoritative information for client developers, it is crucial that it
is correct. In many cases, whole clients are also automatically gen-
erated from specifications. For instance, the Swagger specifications
of Microsoft Azure services are publicly available on GitHub [36],
and software development kits (SDKs) for various languages like
Python, JavaScript, or C# are auto-generated from them [6].

Because a RESTAPI has two components – a client that is derived
from a specification, and a service – Figure 2 illustrates that, unlike
for regression testing of “traditional” programs, there is not just a
single update happening, but in fact two orthogonal update steps:

• First, the service is updated to be able to handle added re-
quests and functionality of the new API version. If the new
API version is backwards-compatible with the old one, the
service is also expected to handle existing requests correctly.

• Second, the updated specification is published so that devel-
opers know about the added functionality and can write new
clients for the new service.

By publishing the updated specification, the service owner “com-
mits” to the new API version – third parties can now write and
generate their own clients to use the newly documented function-
ality. In other words, updating a REST API from a version n to a
new version n + 1 generates two new component versions: a new
service version n + 1, denoted sn+1, and a new client version n + 1,
denoted cn+1, corresponding to the new API specification.

In order to test a service, it is necessary to exercise it with a
client. In what follows, the pair (ci , sj) will denote testing the ser-
vice sj with a client ci matching (or automatically generated from)
specification version i . Figure 2 shows the three possible testing
configurations between the client/service versions n and n + 1 of a
REST API, which are each denoted by an edge in Figure 2:

• (cn , sn) corresponds to the vertical edge where inputs from
old clients are sent to an old service version,

• (cn , sn+1) (the diagonal edge) is the state when the service is
already updated, but the new specification not yet published,
and

• (cn+1, sn+1) is the final configuration when both clients and
service are updated.

The hypothetical configuration (cn+1, sn) is not considered here
because a new client version cn+1 is usually not supposed to work
with the old service version sn (unless the service is fully forward-
compatible, but this is unlikely in practice and therefore this case
will not be considered further in this paper). From now on, we call
a pair (ci , sj) a testing configuration.

2.3 Regressions in REST APIs
Given two new component versions, one for the specification and
clients derived from it, and another version for the service, there
are now two possible types of breaking changes:

(1) Regressions in the service occur when requests that worked
with a previous version of the service are no longer accepted,
or return different or wrong results.

(2) Regressions in the specification occurwhen previously-allowed
requests or responses are removed (or modified) in the new
specification in a way that breaks applications after switch-
ing to the new client version.

Therefore, in order to detect regressions of both types, two types of
differential regression testing are required for REST APIs:

(1) Comparing the testing results of (cn , sn) with the results
of (cn , sn+1) may detect regressions in the service (the client
version cn stays constant).

(2) Comparing the testing results of (cn , sn+1) with the results
of (cn+1, sn+1) may detect regressions in the specification (the
service version sn+1 stays constant).

This is what we call differential regression testing for REST APIs: how
to compare the outputs of two different testing configurations in
order to detect service or specification regressions in a REST API.

A typical example of service regression is when a request type
suddently stops working (which is rare), or when the format of
the response unexpectedly changes and is undocumented (or in-
correctly documented), for instance removing, adding or renaming
response properties (which is more frequent). Examples of specifi-
cation regressions are when an optional property in the body of a
request becomes required, or when an item in an enumerated list
is removed from the specification.

Since a specification and its service are closely related, one might
think that regressions cannot appear independently in one or the
other. However, in the context of cloud services, specifications and
services are often authored and maintained by different people and
written in different languages (e.g., the service can be written in C#
and the specification in Swagger). So in practice, they can become
inconsistent due to regressions in either of them.

Note that specification regressions may be guessed by statically
comparing (diffing) specification descriptions. However, in order to
confirm that such specification changes are either false alarms or
actual regressions, it is necessary to test the new service with the
old client in order to check whether the new service still supports
the old functionality (now undocumented but perhaps still present
for backwards compatibility), or is a true specification regression
as defined above.

Do cloud services (like core Azure services) guarantee backwards
compatibility, i.e., that the two types of regressions defined above
should never occur? Strictly speaking no, but implicitly yes. Strictly
speaking, clients are supposed to use the specification version n + 1
with the service version n + 1. But in practice, backwards com-
patibility is implicitly expected as API versions change frequently
(e.g., for Azure ca. every month), and continuous support of previ-
ous functionality is expected to allow past clients (customers) to
continue operating and evolving their own services [24].

2.4 Client/Service REST API Version Matrix
The updates to the client and service versions defined by a REST
API can be visualized using a two-dimensional client/service version
matrix, as shown in Figure 3. The columns of this matrix correspond
to service versions, while the rows correspond to client versions,
or more accurately, to the versions of the API specifications from
which clients can be generated. The cell in the matrix at row i and
column j corresponds to testing (ci , sj).

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk

Client/Service
Versions

s1 s2 s3 s4

c1 (c1, s1) (c1, s2) (c1, s3) (c1, s4)

c2 (c2, s1) (c2, s2) (c2, s3) (c2, s4)

c3 (c3, s1) (c3, s2) (c3, s3) (c3, s4)

c4 (c4, s1) (c4, s2) (c4, s3) (c4, s4)

Figure 3: Example of a REST API version matrix, client ver-
sions increasing row-wise and service versions increasing
column-wise. The dotted blue arrow marks an example of a
service update. The dashed green arrow marks an example
of a client update (derived from a new specification). Clien-
t/service configurations that are not tested are grayed-out.

If N denotes the number of versions of an API, the client/service
version matrix is of size N 2. However, some of these testing con-
figurations do not make sense in our context: testing (ci , sj) when
i > j is not necessary as newer client versions are not supposed to
work with older service versions. In terms of the version matrix, this
means the matrix is an upper triangular matrix. This reduces the
number of testing configurations from N 2 to N ∗ (N + 1)/2 (i.e., the
number of cells in a triangular matrix, including its diagonal).

2.5 Complexity of Differential Regression
Testing

Each cell of a client/service versionmatrix corresponds to one client-
service testing configuration. An automated testing approach with
a non-differential test oracle runs one test for each cell in the matrix.
E.g., RESTler [12] can test that no request sent by a clent ci ever leads
to a 500 Internal Server Error response by the service sj . But
to get a more interesting test oracle, we are employing differential
testing, and thus have to ask how many of the test configurations
should be compared with each other in order to find all possible
regressions in N versions of an API? In other words, how many
pairs of cells should be compared to achieve this goal?

When updating an API version from version n to n + 1 for any
1 ≤ n < N , both service or specification regressions may be intro-
duced, as defined in the previous subsection. Checking for service
regressions by comparing the testing results of (cn , sn) with the
results of (cn , sn+1) corresponds to a horizontal edge in the version
matrix as indicated by the blue dotted arrow in Figure 3. Similarly,
checking for specification regressions by comparing the testing
results of (cn , sn+1)with the results of (cn+1, sn+1) corresponds to a
vertical edge in the version matrix, highlighted as the green dashed
arrow in Figure 3.

Instead of checking separately for service regressions and speci-
fication regressions, why not simply compare the testing results of
(cn , sn) with (cn+1, sn+1) directly? (Such comparisons would cor-
respond to diagonal edges between cells in the version matrix.)
The reason is that such comparisons would be harder, less accurate,
and could miss detecting regressions. For example, if a request X is
renamed toY in version n+1, both (cn , sn) usingX and (cn+1, sn+1)
using Y may work fine (no errors), but automatically detecting that
X has been renamed Y with high confidence (no false alarms) is

a harder problem. In contrast, leaving the client version cn or the
service version sn+1 constant avoids this “generalized mapping”
problem, and facilitates the detection of service or specification
regressions, respectively.

By generalization of the previous argument, it is also unecessary
to perform differential testing on any non-adjacent pairs of testing
configurations in the version matrix: for any i ′ > i and j ′ > j, it is
not necesary to compare the testing results of (ci , sj) with (ci′ , sj′).
Indeed, any service regression between the old (ci , sj) and the new
(ci′ , sj′) will be found when differential testing of some (ci , sn) and
(ci , sn+1) with j ≤ n < j ′. Similarly, any specification regression
between the old (ci , sj) and the new (ci′ , sj′) will be found when
differential testing of some (cn , sj′) and (cn+1, sj′) with i ≤ n < i ′.
In other words, comparisons corresponding to transitive edges need
not be considered in the version matrix: comparing only atomic
updates is sufficient.

Consequently, for any testing configuration (ci , sj) in the version
matrix, we need to compare it to at most its two adjacent neighbors
along the two dimensions, namely (ci , sj+1) (right neighbor) and
(ci+1, sj) (bottom neighbor) if i < j.

If we want to cover all possible N ∗ (N + 1)/2 client-service
(ci , sj) testing configurations (i.e., all the cells in the upper trian-
gular version matrix including the main diagonal), the number of
differential testing comparisons we need to perform is therefore:

• For every testing configuration on the main diagonal of the
version matrix, one can only compare its output to the right
neighbor (since the bottom neighbor is an invalid configura-
tion of old service and new client): N comparisons.

• For every testing configuration in the rightmost column, one
can only compare to bottom neighbors (since there are no
more recent service versions to the right): N comparisons.

• For the bottom right corner (most recent client and service
version), we performed two unnecessary comparisons: −2.

• For all other “interior cells”: 2 comparisons (one to the right,
where the service is updated, one down, where the client is
updated): (N−1)(N−2)

2 cells times 2 comparisons per cell.
• This gives a total number of comparisons for differential
testing: N + N − 2 + (N−1)(N−2)

2 ∗ 2 = N ∗ (N − 1)

In summary, given an API with N versions, there are T (N) =
N ∗(N+1)

2 possible client/service testing configurations, and finding
regressions in all possible service and specification updates requires
D(N) = N ∗ (N − 1) comparisons (or diffs) between the outputs of
those T (N) client/service configurations.

2.6 Diagonal-Only Strategy
Additionally, we also propose a simpler and less expensive strategy
for finding service and specification regressions:

• For every new version n + 1, only two new testing configu-
rations have to be run: (cn , sn+1) and (cn+1, sn+1).

• Between the original configuration (cn , sn) and the two new
configurations, perform only two comparisons: compare
(cn , sn) with (cn , sn+1) (to check for service regressions) and
compare (cn , sn+1) with (cn+1, sn+1) (to check for specifica-
tion regressions).

Differential Regression Testing for REST APIs ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

REST API

Specification

Service

Requests

Responses

RESTler

Network

Log

1.

2.

3.

Figure 4: RESTler overview.

In other words, this strategy corresponds to only testing the con-
figurations corresponding to the diagonal cells (cn+1, sn+1) of the
version matrix, plus all the cells (cn , sn+1) immediately above these.
Let us therefore call this strategy the diagonal-only strategy.

Given N API versions, the advantage of this strategy is that it
requires only Tdiag(N) = 2 ∗ (N − 1) client-service test combina-
tions, and only Ddiag(N) = 2 ∗ (N − 1) comparisons (diffs) among
these. In theory, assuming services and specifications are backward-
compatible, this strategy is as accurate as the upper-triangular
matrix strategy, by transitivity of backward-compatibility, if also
assuming a fixed deterministic test-generation algorithm from spec-
ifications, and assuming services responses are deterministic. How-
ever, if any of these three assumptions are not satisfied, the diagonal-
only strategy provides less coverage among all the possible client-
service version pairs, and therefore could miss more regressions
compared to the upper-triangular matrix strategy, simply because
it runs fewer tests.

In practice, is the diagonal-only strategy sufficient to find many,
or even all the service and specification regressions that are found
by the upper-triangular matrix strategy? In Section 4, we will em-
pirically answer this question for 17 versions of a large complex
API of a core Microsoft Azure service. But first, we need to define
how to exercise a client version ci with a service version sj , and
then how to compare testing results obtained with various such
combinations. These are the topics discussed in the next section.

3 TECHNICAL CHALLENGES
3.1 From Specifications to Tests
In order to automatically generate client code from a REST API
specification and comprehensively exercise a service under test, we
use a recent automatic test generation tool RESTler [12]. As shown
in Figure 4, RESTler generates and executes sequences of the re-
quests defined in the API specification, while recording all requests
and responses in a network log. RESTler supports the Swagger (re-
cently renamed OpenAPI) [46] interface-description language for
REST APIs. A Swagger specification describes how to access a cloud
service through its REST API, including what requests the service
can handle, what responses may be received, and the response for-
mat. Most Azure services have public Swagger API specifications
available on GitHub [36]. A test suite automatically generated by
RESTler attempts to cover as much as possible of the input Swagger
specification, but full coverage is not guaranteed. This limitation
is acceptable because the purpose of this work is only to detect
specification or service regressions through automated testing, not
to prove the absence of regressions (verification).

1 [[{ // a pair of sent request and received response
2 "request": {
3 "method": "PUT",
4 "uri": ["blog", "post-42"],
5 "queryString": { "api-version": "2017" },
6 "headers": {
7 "Authorization": "token-afe2d391031afe...",
8 "Content-Type": "application/json",
9 ... }, // more headers

10 "body": { // body as JSON, not plain string
11 "title": "My first blogpost", // property-1
12 "content": "..." } //property-2
13 },
14 "response": {
15 "status": "201 Created",
16 "headers": {
17 "Content-Length": "566",
18 "Date": "Wed, 31 Jul 2019 18:00:00 GMT",
19 "Server": "Apache/2.4.1 (Unix)",
20 "x-request-id": "fae12396-4557-4755-bd1b-7380d40d033c",
21 ... },
22 "body": {
23 "id": "/blog/2019-07-31/post-42", //property-3
24 ... }
25 },
26 ... // more requests and responses for this sequence
27 }],
28 ... // more sequences of requests and responses
29]

Figure 5: Example of a network log.

log ::= requestSequence ∗

requestSequence ::= requestResponsePair ∗

requestResponsePair ::= (request, response ?)

request ::= method, uri, headers, body
response ::= statusCode, statusDescription, headers, body

method ::= GET | PUT | DELETE | PATCH | ...

uri ::= path, queryString
path ::= pathComponent/∗

queryString ::= (key, value) ∗

statusCode ::= 200 | 201 | ... | 400 | ... | 500

statusDescription ::= OK | Created | ... | Bad Request | ...

| Internal Server Error

headers ::= (key, value) ∗

key, value, pathComponent ∈ strings
body ∈ JSON values

Figure 6: Abstract syntax of network logs. Common symbols:
* means zero or more repetitions, ? is zero or one.

Since we use RESTler as a building block in our approach, this
limitation is orthogonal to our approach. Future improvements to
RESTler that exercise services more thoroughly could potentially
lead to more regressions found by our approach as well.

3.2 Network Logs
The network logs considered in this work are standard, and are not
RESTler specific. REST API traffic consists of sequences of request-
response pairs. An example of a request and its response are shown
in Figure 5 in the JSON format. Each request consists of a method,
a uri, headers, and a body. Each response consists of the HTTP
status code and description, headers, and a body. Figure 6 shows the
abstract syntax of network logs capturing REST API traffic.

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk

Resources managed through a REST API typically need to be
created first (with a PUT or POST request), then can be accessed
(with a GET request) or updated (with a PATCH or POST request),
and then deleted (with a DELETE request). Some resources require a
parent resource in order to be created. For example, the request PUT
/blog/post-42?api-version=2017 shown in Figure 5 creates a
new blog post with id post-42; the response includes 201 Created,
which means the new resource has been successfully created; only
then a request, for example, PUT /blog/post-42/comment/3?api-
version=2017, may be executed to add a comment (child resource)
associated with that blog post (parent resource). RESTler is stateful:
it can automatically generate such sequences of causally-related
requests in order to exercise “deeper” parts of an API specification
(like the comment part of the API in the above example).

We define a network log as a sequence of sequences of request-
response pairs. Each subsequence represents a “testing session” of
usually-related requests with their responses. Note that the struc-
ture of HTTP requests and responses is explicitly represented in
JSON, e.g., headers are a map from names to values, and URL paths
are a sequence of path components. Also note that if the body is of
type application/json (as is common for REST APIs), it is saved
in the log a structured manner and not just as a plain string.

3.3 Diffing of Network Logs
A naïve implementation for comparing two network logs might use
an off-the-shelf textual diffing tool or structural diffing tool such as
json-diff [23]. There are several reasons why this approach does
not work well for identifying potential regressions in network logs:

First, not every part of the exchanged HTTP messages is rele-
vant for testing the behavior of a cloud service. For example, HTTP
header fields such as Authorization are expected to contain differ-
ent values in each log, since authentication tokens are refreshed at
the start of each test run. Another example is the Content-Length
field of the response, which can be ignored because it adds only
noise to the comparison. (The length of a body will be different
only if there already was a difference in the contents.)

Second, requests automatically generated by RESTler may con-
tain randomly chosen concrete values, which do not indicate service
behavior changes. For example, unique names are generated when
creating resources, and those names can also appear in responses.

Third, some values in returned responses are non-deterministic
values generated by the service, which also do not indicate a differ-
ence in behavior. Examples of such values that are out of the control
of the client are the Date response header, unique IDs for requests
and responses (used for debugging in case of a service error) such as
the x-request-id or Etag headers, or service dependent dynamic
values. (E.g., for a DNS service API, the exact nameservers returned
for a domain can vary for load balancing purposes).

Thus, prior to performing regression diffing, we perform an
abstraction of the network logs that excludes such values from the
subsequent diff. Abstractions work by matching certain values in
the network logs against a regular expression and replacing them by
(fresh) constants, in order to equate all of their (possibly different,
but irrelevant) values. The abstractions we apply are:

• Replace the values of the Date, Etag, and x-*-request-id
headers by constant strings.

• Replace IDs that were randomly generated by RESTler with
constant strings, e.g., post-42 and post-23 both match
the regular expression post-\d+ and would be replaced by
post-id.

• A set of service-specific replacements, e.g., non-deterministic
name servers, UUIDs, etc.

Abstractions are specified by a single command-line parameter, so
effort is minimal and done once per API.

Recursive Comparisons. After having applied abstractions, we
compare two network logs by recursively comparing their subele-
ments. To start with, we compare the first sequence of requests
in the first network log with the first sequence of requests in the
second network log. For sequences of strings, we use an algorithm
(such as Myers diff [38]) that minimizes the number of edits be-
tween two such sequences. In the general case (i.e., diffing two
sequences of requests), we do not minimize the size of our diff.
Instead, if the first sequence is shorter than the second sequence,
we regard elements after the common prefix as insertions, whereas
for the case where the first sequence is longer than the second
sequence, we regard those elements as deleted. We leave further
minimizing the diffs, e.g., by employing tree diffing algorithms like
in the GumTree tool [20] to future work.

We then recursively apply this comparison in a bottom-up fash-
ion on the structured network logs to obtain a full network log diff,
which has the same structure as a single network log, only with
intermediate insert, delete, and edit nodes, at all subtrees where the
two network logs were not equal.

3.4 Stateless Diffing of Network Logs
The diffing approach of the previous section enables a precise analy-
sis of all differences in network logs from two testing configurations.
However, even after applying the above abstractions, the following
problems remain that cause irrelevant differences to be shown:

• Sensitivity to ordering and deletions/insertions in the specifica-
tion. Changes in the specification may produce a difference
in the sequences of requests generated by RESTler, which
follows the ordering of the specification. For example, if a
new request is added, comparing the sequences in order will
produce many false positives, since the request sequences
will be “out of sync”.

• Non-determinism due to the global state of the service. During
exercising a service, many resources are created, which are
asynchronously garbage collected in order to prevent ex-
ceeding resource limits. Due to timing differences between
multiple runs, a GET request that, e.g., lists all blog posts, may
return a different set of blog posts each time it is invoked
(depending on how many have been deleted).

Although the above problems can be solved by further transfor-
mations of the precise diffs, our analysis of these diffs (see Section 4)
motivated us to introduce a more compact format, focused on max-
imizing the relevant differences shown, to be able to more quickly
discover and confirm a subset of regressions. We call this approach
stateless diffing of network logs, because each request-response
pair is considered in isolation, without taking into account the full

Differential Regression Testing for REST APIs ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

PUT /[...]/virtualNetworks/virtualNetworkName
- Request hash=abe64568e3c0b694c7413c6df808cf4c
+ Request hash=b2b7584635adccd0786cbeb240f4b867

Responses:
- 201 Created
+ 400 Bad Request

-DELETE /[...]/virtualNetworks/virtualNetworkName

Figure 7: Stateless diff example.

sequence of requests executed in the test run prior to the request.
Specifically, stateless diffing transforms the network logs as follows:

• Group request-response pairs into equivalence classes, in-
stead of the original ordered sequences.

• Consider only the response’s status, instead of the full con-
tent of its response.

• Do not show added requests and responses in the diff, since
those are backwards-compatible feature additions of a speci-
fication and service.

Expanding on the first point, stateless diffing first groups to-
gether all requests of a particular type. A request type consists of the
request’s HTTP method, the abstracted path, and a hash of its head-
ers and body. As an example, a request like GET /blog/post-42
<headers...> <body...> has the following tuple as its type: GET,
/blog/post-id (as described earlier, our abstractions replace the
random id 42 with a constant), and hash(headers||body). Each
unique request type can correspond to many actual requests, be-
cause (1) the same request can be sent multiple times in different
sequences, and (2) because abstractions map different concrete re-
quests to the same abstracted one. Under each request type, we then
list all the corresponding responses to those requests. For responses,
to exclude any global state, we include only the response status
code and description.

Figure 7 gives an example of a stateless diff. The first line states
that a PUT request to the virtualNetworks API with the endpoint
virtualNetworkName is present in both network logs (shown in
black). The second and third line indicate that the full requests,
including their bodies (shown by the hashes) changed, e.g., because
a change in the specification added or removed properties in the re-
quest body. As a result, the server responds with 400 Bad Request
after the update instead of 201 Created, a potential regression.
Finally, in the last line, we also see that a DELETE request is missing
in the network log after the update. In this case, the DELETE request
is missing, because the resource to be deleted could not be created
by the earlier PUT.

Stateful and stateless diffing will be experimentally evaluated in
Section 4. In total, their implementation required about 2,200 lines
of F# code.

4 EVALUATION
4.1 Tested REST APIs and Versions
To evaluate our approach, we regression-tested RESTAPIs of widely
usedMicrosoft Azure cloud services related to networking. They are
used, for example, to allocate IP addresses and domain names, or to

Table 1: Overview of the specifications of the tested APIs.

Specifications
in Directory

Versions Last Version Sum Tested Versions

Total Tested # Files # Lines # Files # Lines

dns/ 4 3 60 4,142 129 9,585
network/ 23 17 435 58,419 4,204 613,953
Sum 495 62,561 4,333 623,538

20
16

-12
-01

20
17-

03
-01

20
17-

06
-01

20
17-

08
-01

20
17-

09
-01

20
17-

10
-01

20
17-

11-
01

20
18

-01
-01

20
18

-02
-01

20
18

-0
4-0

1
20

18
-0

6-0
1

20
18

-0
8-

01
20

18
-10

-01
20

18
-11

-01
20

18
-12

-01
20

19
-02

-01
20

19
-0

4-0
1

100

150

200

250

300

350

400

Tested Specification Versions
Nu

m
be

r o
f S

pe
ci
fie

d
Re

qu
es

ts

Figure 8: Evolution of the Network APIs over time in terms
of specified requests.

provide higher level infrastructure, such as load balancers and fire-
walls.1 Their Swagger specifications are available on GitHub [36].

Concretely, we looked at a collection of over 30 different REST
APIs, split into two groups. First, the individual API of the Azure
DNS service (in theGitHub repository under specification/dns/)
and second, a large collection of APIs related to other networking
services (jointly specified in specification/network/). We will
refer to the first individual API as “DNS API” and to the large second
group as “Network APIs” throughout the rest of the evaluation.

Since counting APIs is somewhat arbitrary, Table 1 gives an
impression of the size of the tested APIs in more well-defined mea-
sures. The DNS API has 4 versions, where the most recent version
is specified in 60 files containing 4,142 lines of JSON in total. The
Network APIs are a substantially larger set, having 23 versions over
time, with the latest version alone having a Swagger specification
that spreads over 435 files with 58,419 lines of JSON. A large frac-
tion of the specifications are examples of concrete requests (for the
latest Network APIs: 395 files with 24,267 lines in total, so roughly
40% in terms of lines). Those examples are an important part of the
specifications since (1) documentation is generated from them and
(2) developers often use examples in their very first interaction with
the service, so their correctness is important to service adoption.

Of all API versions, we selected those where the specification
contained examples, which was the case for 3 versions (out of 4) for
Azure DNS and 17 (out of 23) versions for the Network APIs. We
selected those for two reasons: they are the most-recent ones (only
the oldest versions do not include examples), and RESTler generates
better test suites when given a set of examples to start from.

Many Azure APIs, including the ones we tested, are versioned by
date (e.g., a version is 2019-04-01). A new version of the DNS and
1https://azure.microsoft.com/en-us/product-categories/networking/

https://azure.microsoft.com/en-us/product-categories/networking/

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk

Table 2: Overview of regressions found in Azure DNS and Network REST APIs.

API Endpoint Description Correct vs. Regressed Status

Regressions found with stateless diffing across different specification versions (“↕ direction”):
1 publicIPAddress Property in example incorrectly moved 2018-06-01 2018-07-01 Example corrected in 2018-08-01

2 publicIPAddress Property in example incorrectly moved 2018-10-01 2018-11-01 “Re-regression” of bug above,
corrected again in 2018-12-01

3 virtualNetworks Property in example incorrectly moved 2018-10-01 2018-11-01 Example corrected in 2018-12-01
4 networkSecurityGroups Required property in example removed 2018-10-01 2018-11-01 Example corrected in 2018-12-01
5 interfaceEndpoints Whole endpoint removed / renamed 2019-02-01 2019-04-01 Confirmed, but deemed acceptable
Regressions found with stateful diffing across different service versions (“↔ direction”):
6 dnsZones Unspecified property zoneType in service response 2017-09-01 2017-10-01 Property specified in 2018-05-01
7 publicIPAddress Unspecified property ipTags 2017-09-01 2017-10-01 Property specified in 2017-11-01
8 loadBalancers Unspecified property enableDestinationServiceEndpoint 2017-10-01 2017-11-01 Property never specified
9 loadBalancers Unspecified property allowBackendPortConflict 2018-10-01 2018-11-01 Property never specified
10 virtualNetworks Unspecified property enableDdosProtection 2017-06-01 2017-08-01 Property specified in 2017-09-01
11 virtualNetworks Unspecified property enableVmProtection 2017-06-01 2017-08-01 Property specified in 2017-09-01
12 virtualNetworks Unspecified property delegations 2018-02-01 2018-04-01 Property specified in 2018-08-01
13 virtualNetworks Unspecified property privateEndpointNetworkPolicies 2019-02-01 2019-04-01 Property specified in later commit
14 virtualNetworks Unspecified property privateLinkServiceNetworkPolicies 2019-02-01 2019-04-01 Property specified in later commit

Network APIs is released approximately every two months (median
interval: 61 days). Given this update frequency, it is crucial that
new versions are backwards-compatible with previous versions,
otherwise developers could not keep up with such frequent changes.
Figure 8 shows the 17 versions we tested on the x-axis, from an
early version 2016-12-01 up to the most recent version (at the time
of testing) of 2019-04-01. It also shows the number of specified
requests (i.e., HTTP method and endpoint) at each version, which
grows from 132 to 372 over time. The large number of versions
especially of the Network APIs lends itself well to historical analysis
we perform in the following, i.e., finding regressions not only in the
most recent update, but also in updates between earlier versions.

In total, we tested versions of REST APIs that sum up to more
than 600,000 lines of Swagger specifications. This does not include
the many more lines of code needed to implement these services,
since we view the service implementations as black boxes. To keep
up with these changes and find regressions in this amount of data,
developers clearly need tooling, such as our approach.

4.2 Experimental Setup
To test the full upper-triangular API-version matrix as described
in Section 2, we first download the mentioned specification ver-
sions. For each specification version, we then generate a client with
RESTler. This client automatically sends requests conforming to said
specification. Each generated client (one per specification version)
is run multiple times, each time targeting a service of the same or a
higher API version (by setting the api-version query parameter).
Each test run (one combination of specification and service version)
produces a network log. In total, testing N = 3 versions of the DNS
API results in T (N) =

N (N+1)
2 = 6 network logs and testing 17

versions of the Network APIs results in 153 network logs.
For differential regression testing, we then diff each pair of net-

work logs that correspond to adjacent cells in the client-server
version matrix (i.e., where either the client or the service was up-
dated by one version). This gives D(N) = N (N − 1) = 6 diffs for

testing the DNS API and 272 diffs for the Network APIs. For service
updates along the horizontal direction, we used the more precise
stateful diffing, for updates of the underlying specification, we use
stateless diffing. We substantiate this choice in Section 4.5. Manual
inspection of the produced diffs resulted in 14 found regressions,
which we discuss next.

4.3 Found Regressions – Overview
Table 2 gives an overview of the regressions we found in the tested
DNS and Network APIs. In total, we discovered 14 unique regres-
sions by differential testing. 5 were found by stateless diffing across
different specification versions, i.e., when we updated the specifi-
cation and generated a new client from it, but targeted the same
service version. In these cases, the Correct vs. Regressed column
shows the two versions of the specification update that introduced
the regression. 9 regressions were found by stateful diffing across
different service versions. In those cases, Correct vs. Regressed shows
the service update, and not the specification, since the latter remains
constant. The presence of both types of regressions shows that both
directions of diffing in the version matrix are necessary. We also
see from the API Endpoint column (the last path component of the
URI) that we found regressions in different APIs end endpoints.

In the Status column, we show a short assessment of the bugs.
In all but two cases (regressions #8 and #9), later versions of the
API specification include fixes for the found regression, or other
evidence (regression #5) is available to confirm the regression; these
regressions were thus eventually found by the Azure service owners
after deployment.

4.4 Found Regressions – Examples
We now discuss in more detail examples of regressions we found
and why it is important to find them, ideally before deployment.

Regressions #1 to #4: Broken Example Payloads. Errors in exam-
ples – from which documentation is generated and that illustrate

Differential Regression Testing for REST APIs ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

1 {
2 "parameters": {
3 ...
4 "publicIpAddressName":
5 "test-ip",
6 "parameters": {
7 "location": "eastus"
8 }
9 }
10 }

Correct versions: 2018-06-01
and 2018-10-01.

{
"parameters": {

...
"publicIpAddressName":

"test-ip",
"parameters": {},
"location": "eastus"

}
}

Regressed version 2018-07-01 and
re-regressed version 2018-11-01.

Figure 9: Regression in the examples of the specification for
publicIpAddress. The erroneous change is highlighted.

how to use an API – are frustrating for users because they are
typically the first attempt to use the service. In specification ver-
sion 2018-07-01, a specification author erroneously moved the
location property one level up in an example request for the
publicIpAddress API (regression #1), as shown in Figure 9. This
was caught by stateless diffing, because both network logs contain
the request, but the response was different: 200 OK in the old ver-
sion, but 400 Bad Request in the regressed version. In the next
specification version, 2018-08-01, the change was reverted and the
bug fixed. Interestingly though, the example was regressed again
in version 2018-11-01 (regression #2). We can see how the nesting
of two parameters properties might have led to the confusion.
From the double regression we can also take that tooling such as
described in this paper would help developers catch specification
regressions prior to release. Even more interestingly, our tool also
found similar regressions in examples for other APIs (regressions
#3 and #4).

Regression #5: Renamed Endpoint. A renamed or removed end-
point in the specification is a severe regression, because existing
clients that use it will break when updating to the next service
version. In this case, the stateless diff of two network logs showed:

-GET /[...]/providers/Microsoft.Network/interfaceEndpoints

That is, the request to this endpoint was previously sent by the
client generated from the old specification, but no longer after the
specification update. When investigating the bug, we found that
actual users had already detected such breaks and opened a GitHub
issue. The response of the service owners was that this breaking
change was intentional, and acceptable to them because the API
was not yet officially announced. This nevertheless appears to be
a regression, particularly because the previously working version
did not end with "-preview", a suffix typically used to differentiate
such new unstable APIs that may change in the future.

Regressions #6 to #14: Unspecified Properties in Responses. An addi-
tional, but unspecified JSON property in the response of an API may
break clients, because the property cannot be parsed by a generated
SDK or is not handled by custom code written by the user based on
the specification. Microsoft’s REST API Guidelines [24] (Sec 12.3)
mention this explicitly: “Azure defines the addition of a new JSON
field in a response to be not backwards compatible”. For instance,
a property named ipTags started to be returned in responses by
service version 2017-10-01 (regression #7). However, this property

Table 3: Size comparison of stateful vs. stateless diffs forDNS
and Network APIs depending on the update direction.

Diffing
Method

Update
Direction Sum Lines Sum Bytes Empty Diffs

(of 139 in total)

stateful specification 8,784,417 677,605,439 14 (10%)
stateful service 388,757 34,951,726 0
stateless specification 2,197 505,298 56 (40%)
stateless service 95 29,394 136 (98%)

Table 4: Diff sizes with the diagonal-only strategy.

Diffing
Method

Update
Direction

Sum Lines
(Reduction)

Sum Bytes
(Reduction)

Found
Bugs

stateful service 36,637 (9%) 3,690,016 (11%) 9 (of 9)
stateless specification 302 (14%) 63,774 (13%) 5 (of 5)

was added in the specification only a month later at version 2017-
11-01, thus breaking clients in the meantime. Perhaps the service
owners intended to expose these properties to clients, but did so
“too early”, namely in service versions where the specifications do
not yet mention these new properties. Our approach found nine
of such cases, because the stateful diff showed those properties as
inserts in the received response bodies.

4.5 Quantitative Evaluation
We now evaluate individual parts of our approach in more detail.

4.5.1 Comparing Stateful vs. Stateless Diffing. As expected, stateful
diffs contain more information on average (2.7MB per textual diff
file) than stateless diffs (6 KB). Indeed, stateless diffs only consider
request types (i.e., HTTP methods and endpoints) and the response
status, but ignore request and response bodies.

Table 3 shows that the sizes of the diffs also depend on the
direction of the comparison, i.e., whether the specification or the
service version remains constant when diffing a pair of network
logs. Stateful diffing across specification updates produces a lot of
differences, in total 678MB of text files. The root cause for these
large diffs is that new requests or parameters in the specification
will appear in the network log of the new client, and add up quickly
if the request is tested many times. Since this is a lot of data to
manually inspect, we do not make use of this output in our approach
(and show it grayed-out in the table). In contrast, stateless diffing
across specification updates (third row), produces a much more
manageable amount of diffs to inspect, namely 505 KB or about two
thousand lines in total.

For service updates (i.e., where the compared network logs come
from the same client derived from a constant specification version),
stateless diffing abstracts away too much information and brings
up almost no warnings (last row). 98% of the diffs in that case are
empty. When diffing network logs from the same client, we thus
use stateful diffing (second row), which is both feasible in terms of
output produced and more precise, because the diff may contain
changes in the services response bodies (e.g., added properties).

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk

Table 5: Relation of regressions to diffs in which they mani-
fest and if the diagonal-only diffing strategy finds them.

Regression: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

In # Diffs 7 4 4 4 1 1 5 6 13 3 3 9 12 12
On Diagonal? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4.5.2 Upper-Triangular Matrix vs. Diagonal-Only Strategy. For a
comprehensive evaluation, we inspected all 278 diffs (DNS: 6, Net-
work APIs: 272) of the upper-triangular matrix of specification and
service versions, and found the 14 regressions from Table 2. In
Section 2.6 we additionally propose a diagonal-only strategy that
requires inspection of only two updates (and thus diffs) per new API
version: First, diffing the network logs of (cn , sn) against (cn , sn+1)
when the service is updated, and then diffing (cn , sn+1) against
(cn+1, sn+1) when the new specification is published. This reduces
the number of diffs greatly – linear instead of quadratic in terms of
API versions. With the tested APIs, the diagonal-only subset of diffs
comprises only 36 files (DNS: 4, Network APIs: 32) instead of 278.
Table 4 shows that this results in a large reduction in terms of lines
and bytes: stateful diffing across specification versions produces
only 36,637 lines to inspect instead of 388,757, i.e., a reduction to
9% of the original effort. For stateless diffing across specification
versions, there are only 302 lines instead of 2,197 to inspect, or a
reduction to 14%.

Table 5 shows the mapping of regressions to diffs, i.e., in how
many diffs each regression appears. For instance, regression #9
appears in 13 distinct diff files.We can see that despite this reduction
in inspection effort, the diagonal-only strategy still manages to
find all 14 regressions in total. This strategy thus provides a more
attractive diffs-to-regression ratio than the upper-triangular-matrix
strategy, especially for large numbers N of API versions.

4.5.3 Runtime and Manual Inspection Effort. All experiments were
conducted on a single commodity PC with an Intel Core i7 proces-
sor and 32GB of main memory under Windows 10. For the DNS
API, collecting the network logs for all valid combinations of speci-
fication and service versions took 11 minutes and 28 seconds. For
the much larger Network APIs, this step took 3 days, 8 hours, and 4
minutes. During this interaction with the Azure services, a total of
92,381 requests were sent by RESTler. Running our diffing tools for
all network logs took less than an hour for all valid pairs of logs in
total. That is, the runtime of our approach is clearly dominated by
exercising the web services, not the diffing of the collected logs.

Analyzing all 278 diffs of all the tested APIs for this historical
analysis took about a week of work for a PhD student. In particular,
analyzing stateless diffs was relatively quick since 40% were empty
and the remaining ones were often duplicates of each other. Since
stateful diffs contain more information (e.g., bodies of requests and
responses), inspecting them took more time but was still manage-
able since differences, e.g., in the response of a particular request,
re-appear several times and can be skipped. For this, we made use
of code folding for JSON files (which stateful diffs are).

4.6 Threats to Validity
Even though we evaluate our approach on a large collection of
real-world REST APIs, some threats to validity remain.

Our approach uses RESTler to automatically generate requests
from an API specification, and test the service with those sequences.
The amount of regressions that can be uncovered thus depends on
how well RESTler can exercise a service under test. However, our
approach makes no assumption on how requests are generated. The
method for generating requests is a black box that can be exchanged
or improved independently of our core differential testing idea.

The results of our evaluation also depend on the effectiveness
of our diffing described in Section 3. Future work could improve
our implementation by using more elaborate diffing algorithms
and thus reduce the number of false positives. The core idea of our
approach, namely the difference between specification and service
regressions and that testing for both is essential, remains valid.

Finally, our experimental results also depend on the specific
APIs considered, as well as the bugs in those APIs and services.
While the specifications of the Azure networking APIs live in a
single repository, this is merely an artifact of centralizing these
specifications for developer convenience. These APIs are distinct,
targeting different services, and written and maintained by different
service owners.

4.7 Continuous Differential Regression Testing
Wepresented a historical analysis of Azure networking APIs in order
to evaluate differential regression testing on a large amount of data,
to see howmany changes (diffs) there are, howmany regressions we
can find using our approach, what these regressions look like, and
to determine which differential testing strategy (upper-triangular
matrix or diagonal-only) works best.

However, the main practical use of our approach is continuous
differential regression testing, whereby differential testing is applied
to detect regressions in the latest-only API version update before
deployment. Another similarmain application is the pre-deployment
detection of service regressions across (daily or weekly) service
revisions, i.e., service updates which do not involve a new API
version. In this scenario, the latest API specification is fixed and
the testing results obtained with today’s service are compared only
with those obtained during the last testing results available.

In such a continuous testing context, there are at most two diff
files to inspect, and their sizes is typically much smaller than when
comparing very different versions as in our historical analysis. In
particular, they are empty when adding a new endpoint, adding new
examples, or updating description text. Also, within a continuous-
integration environment, API changes are already reviewed since
they may break clients (e.g., see [35]). Our automation provides
a systematic way for API changes to be presented to developers.
Inspecting a small diff file only requires minutes by API experts.

Yet regressions can still be found this way. As an example, we
found a regression across a revision of the DNS service version
2017-10-01 between May 5, 2019 and May 19, 2019 with respect to
the unspecified property zoneType (see regression #6 in Table 2). A
manual analysis revealed that, on May 5, all versions of the service
returned the extra property, even though it was only declared in the
newer specification of 2018-05-01. Then, on May 19, it appears that

Differential Regression Testing for REST APIs ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA

a fix was attempted: the property was removed from the (dynamic)
response of several of the earlier service versions, matching the
corresponding specifications, except for service version 2017-10-01,
where the specification and service were still out-of-sync.

5 RELATEDWORK
REST APIs and Their Versioning. Since the REST principle was

introduced in [21, 22], REST APIs have become a building block
of the modern web, and a foundation of cloud services. REST API
versioning is discussed in books like [7, 33, 40], where backwards
compatibility is emphasized as a golden-rule of good REST API
design and evolution. However, we are not aware of any other
work discussing the two types of regressions, namely service vs.
specification regressions, defined in Section 2 and how to detect
these with differential testing. This paper introduces a principled
foundation to this important topic.

Regression Testing for REST APIs. Regression testing [39], i.e.,
running a test suite after modifying software in order to ensure
that existing features are still working correctly, is a widely-adopted
form of testing [29], including in industry and practice [41]. With
the recent explosion of web and cloud services, regression testing
has naturally been applied to REST APIs as well, mostly in commer-
cial tools, such as SoapUI [5], Postman [3], and others [2, 4]. These
tools are helpful to develop a fixed regression test suite, possibly
by first recording live or manually-generated test traffic. However,
these tools (1) do not generate tests automatically and they (2) do
not perform differential testing.

Test Generation Tools for REST APIs. Other tools available for
testing REST APIs generate new tests by capturing API traffic, and
then parsing, fuzzing and replaying the new traffic with the hope of
finding bugs [9, 10, 14, 15, 43, 45, 47]. Other extensions are possible
if the service code can be instrumented [11] or if a functional speci-
fication is available [44]. RESTler [12] is a recent tool that performs
a lightweight static analysis of a Swagger specification in order to
infer dependencies among request types, and then automatically
generates sequences of requests (instead of single requests) in order
to exercise the service behind the API more deeply, in a stateful
manner, and without pre-recorded API traffic. These tools can find
bugs like 500 Internal Server Errors, but none of these perform
differential testing or target regressions specifically.

Differential Testing. Originally devised by McKeeman [34], differ-
ential testing is now a well-known technique for solving the oracle
problem [13] in automated testing by comparing two different, but
related programs on the same inputs. One way of comparing dif-
ferent programs is by taking different implementations, e.g., for
compiler testing [16, 18, 27, 31, 48]. Since then, differential testing
has also been applied to other development tools, such as IDEs
[17], interactive debuggers [28], and program analyzers [26]. In this
work, we also use differential testing, but apply it to REST APIs in
order to compare various client-service configurations.

Static Diffing to Find Specification Regressions. Our stateful and
stateless approaches to diffing network logs are built upon stan-
dard algorithms for computing edit distances and edits scripts [38].
Diffing can be applied directly to Swagger specifications in order

to find some types of clear regressions, such as removing a request
from an API [1]. However, static diffing of specifications has its own
challenges. First, these diffs can be large: for instance, the 16 diffs
files obtained by pairwise diffing all 17 Azure Network API Swagger
specifications in chronologic order result in a total of 15,571 lines
and 465,624 bytes. Second, most differences are harmless: adding
new files, reorganizing API requests, adding or modifying exam-
ples, etc. Third, even when modifying specific parameters in a new
specification version, the old parameters are often still handled cor-
rectly by the new service for backwards-compatibility reasons, and
therefore are not regressions; the only way to eliminate such false
alarms is by dynamically testing the new service against (client
code generated from) the old specification. In contrast, specification
regressions can be found with stateless diffing and the diagonal-
only strategy (16 diffs) by inspecting only 302 lines (see Table 4), i.e.,
two orders of magnitude less data compared to 15,571 lines with
static diffing. Overall, static specification diffing is complementary
to the dynamic testing-based approach developed in this work.

6 CONCLUSION
This paper introduces differential regression testing for REST APIs.
It is the first to point out the key distinction between service and
specification regressions. We discussed how to detect such regres-
sions by comparing network logs capturing REST API traffic using
stateful and stateless diffing. To demonstrate the effectiveness of
this approach on a large set of services and APIs, we presented a
detailed API history analysis of Microsoft Azure networking APIs,
where we detected 14 regressions across 17 versions of these APIs.
We discussed how these regressions were later fixed in subsequent
specification versions and service deployments.

The main application of our approach is continuous differential
regression testing, whereby differential testing is applied to detect
regressions in the latest API version of a service before its deploy-
ment, hence avoiding expensive regressions affecting customers.
We plan to deploy our tools widely soon, and we hope the evidence
provided in this paper will encourage adoption.

ACKNOWLEDGMENTS
We thank Albert Greenberg, Anton Evseev, Mikhail Triakhov, and
Natalia Varava from the Microsoft Azure Networking team for
encouraging us to pursue this line of work and for their comments
on the results of Section 4.

REFERENCES
[1] [n.d.]. 42crunch. https://42crunch.com/
[2] [n.d.]. Apigee Docs. https://docs.apigee.com/
[3] [n.d.]. Postman | API Development Environment. https://www.getpostman.com/
[4] [n.d.]. vREST – Automated REST API Testing Tool. https://vrest.io/
[5] [n.d.]. The World’s Most Popular Testing Tool | SoapUI. https://www.soapui.org/
[6] 2019. Azure SDK. https://github.com/Azure/azure-sdk
[7] S. Allamaraju. 2010. RESTful Web Services Cookbook. O’Reilly.
[8] Amazon. 2019. Amazon Web Services (AWS) - Cloud Computing Services. https:

//aws.amazon.com/
[9] APIFuzzer [n.d.]. APIFuzzer. https://github.com/KissPeter/APIFuzzer.
[10] AppSpider [n.d.]. AppSpider. https://www.rapid7.com/products/appspider.
[11] Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with Evo-

Master. ACM Transactions on Software Engineering and Methodology 28, 1 (2019).
[12] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler:

Stateful REST API Fuzzing. In Proceedings of the 41st International Conference on
Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, Piscat-
away, NJ, USA, 748–758. https://doi.org/10.1109/ICSE.2019.00083

https://42crunch.com/
https://docs.apigee.com/
https://www.getpostman.com/
https://vrest.io/
https://www.soapui.org/
https://github.com/Azure/azure-sdk
https://aws.amazon.com/
https://aws.amazon.com/
https://github.com/KissPeter/APIFuzzer
https://www.rapid7.com/products/appspider
https://doi.org/10.1109/ICSE.2019.00083

ISSTA ’20, July 18–22, 2020, Los Angeles/Virtual, CA, USA Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk

[13] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Transactions on
Software Engineering 41, 5 (2015), 507–525.

[14] Boofuzz [n.d.]. BooFuzz. https://github.com/jtpereyda/boofuzz.
[15] Burp [n.d.]. Burp Suite. https://portswigger.net/burp.
[16] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric

Eide, and John Regehr. 2013. Taming compiler fuzzers. In ACM SIGPLAN Notices,
Vol. 48. ACM, 197–208.

[17] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated
Testing of Refactoring Engines. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (Dubrovnik, Croatia) (ESEC-FSE ’07).
ACM, New York, NY, USA, 185–194. https://doi.org/10.1145/1287624.1287651

[18] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated Testing of Graphics Shader Compilers. Proc. ACM Program. Lang. 1,
OOPSLA, Article 93 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133917

[19] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2014. Web API growing
pains: Stories from client developers and their code. In Proceedings of the 2014
Software EvolutionWeek - IEEE Conference on SoftwareMaintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE) (Antwerp, Belgium).

[20] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-Grained and Accurate Source Code Differencing. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering (Vasteras, Sweden) (ASE âĂŹ14). Association for Computing Machin-
ery, New York, NY, USA, 313âĂŞ324. https://doi.org/10.1145/2642937.2642982

[21] Roy T. Fielding. 2000. Architectural styles and the design of network-based software
architectures. Vol. 7. University of California, Irvine Doctoral dissertation.

[22] Roy T. Fielding and Richard N. Taylor. 2002. Principled design of the modern
Web architecture. ACM Transactions on Internet Technology (TOIT) 2, 2 (2002),
115–150.

[23] Zack Grossbart. 2019. JSON Diff – The semantic JSON compare tool. http:
//www.jsondiff.com/

[24] Microsoft REST API Guidelines Working Group. 2019. Microsoft REST API Guide-
lines. https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md

[25] Chris Hawblitzel, Shuvendu K. Lahiri, Kshama Pawar, Hammad Hashm, Sedar
Gokbulut, Lakshan Fernando, Dave Detlefs, and Scott Wadsworth. 2013. Will You
Still Compile Me Tomorrow?. In Proceedings of the 2013 21st ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). ACM, New
York, NY, USA.

[26] Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Differentially
testing soundness and precision of program analyzers. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,
239–250.

[27] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equiv-
alence Modulo Inputs. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Edinburgh, United Kingdom)
(PLDI ’14). ACM, New York, NY, USA, 216–226. https://doi.org/10.1145/2594291.
2594334

[28] Daniel Lehmann andMichael Pradel. 2018. Feedback-directed Differential Testing
of Interactive Debuggers. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New
York, NY, USA, 610–620. https://doi.org/10.1145/3236024.3236037

[29] Hareton KN Leung and LeeWhite. 1989. Insights into regression testing (software
testing). In Proceedings. Conference on Software Maintenance-1989. IEEE, 60–69.

[30] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. 2013. How Does Web Service
API Evolution Affect Clients?. In Proceedings of the 2013 IEEE 20th International
Conference on Web Services (Santa Clara, CA).

[31] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-core Compiler Fuzzing. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Portland, OR,
USA) (PLDI ’15). ACM, New York, NY, USA, 65–76. https://doi.org/10.1145/
2737924.2737986

[32] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. 2019. What Bugs
Cause Production Cloud Incidents?. In Proceedings of HotOS’2019 (Bertinoro,
Italy).

[33] Mark Masse. 2011. REST API Design Rulebook: Designing Consistent RESTful Web
Service Interfaces. " O’Reilly Media, Inc.".

[34] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[35] Microsoft. 2019. Azure ARM API Review Checklist. https://github.com/Azure/
azure-rest-api-specs/pull/6632

[36] Microsoft. 2019. Azure REST API Specifications. https://github.com/Azure/azure-
rest-api-specs

[37] Microsoft. 2019. Microsoft Azure Cloud Computing Platform & Services. https:
//azure.microsoft.com/en-us/

[38] Eugene W. Myers. 1986. An O(ND) difference algorithm and its variations.
Algorithmica 1, 1 (01 Nov 1986), 251–266. https://doi.org/10.1007/BF01840446

[39] G. J. Myers. 1979. The Art of Software Testing. Wiley.
[40] S. Newman. 2015. Building Microservices. O’Reilly.
[41] Akira K. Onoma, Wei-Tek Tsai, Mustafa Poonawala, and Hiroshi Suganuma. 1998.

Regression Testing in an Industrial Environment. Commun. ACM 41, 5 (May
1998), 81–86. https://doi.org/10.1145/274946.274960

[42] Tom Preston-Werner. 2019. Semantic Versioning 2.0.0. https://semver.org/
[43] QualysWAS [n.d.]. Qualys Web Application Scanning (WAS). https://www.

qualys.com/apps/web-app-scanning/.
[44] Sergio Segura, José A. Parejo, Javier Troya, and Antonio Ruiz-Cortés. 2018. Meta-

morphic Testing of RESTful Web APIs. ACM Transactions on Software Engineering
44, 11 (2018).

[45] Sulley [n.d.]. Sulley. https://github.com/OpenRCE/sulley.
[46] Swagger [n.d.]. Swagger. https://swagger.io/.
[47] TnT-Fuzzer [n.d.]. TnT-Fuzzer. https://github.com/Teebytes/TnT-Fuzzer.
[48] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and

Understanding Bugs in C Compilers. In Proceedings of the 32Nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation (San
Jose, California, USA) (PLDI ’11). ACM, New York, NY, USA, 283–294. https:
//doi.org/10.1145/1993498.1993532

https://github.com/jtpereyda/boofuzz
https://portswigger.net/burp
https://doi.org/10.1145/1287624.1287651
https://doi.org/10.1145/3133917
https://doi.org/10.1145/2642937.2642982
http://www.jsondiff.com/
http://www.jsondiff.com/
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/3236024.3236037
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://github.com/Azure/azure-rest-api-specs/pull/6632
https://github.com/Azure/azure-rest-api-specs/pull/6632
https://github.com/Azure/azure-rest-api-specs
https://github.com/Azure/azure-rest-api-specs
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://doi.org/10.1007/BF01840446
https://doi.org/10.1145/274946.274960
https://semver.org/
https://www.qualys.com/apps/web-app-scanning/
https://www.qualys.com/apps/web-app-scanning/
https://github.com/OpenRCE/sulley
https://swagger.io/
https://github.com/Teebytes/TnT-Fuzzer
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Differential Regression Testing for REST APIs
	2.1 Regression Testing and Differential Testing
	2.2 Updates in REST APIs
	2.3 Regressions in REST APIs
	2.4 Client/Service REST API Version Matrix
	2.5 Complexity of Differential Regression Testing
	2.6 Diagonal-Only Strategy

	3 Technical Challenges
	3.1 From Specifications to Tests
	3.2 Network Logs
	3.3 Diffing of Network Logs
	3.4 Stateless Diffing of Network Logs

	4 Evaluation
	4.1 Tested REST APIs and Versions
	4.2 Experimental Setup
	4.3 Found Regressions – Overview
	4.4 Found Regressions – Examples
	4.5 Quantitative Evaluation
	4.6 Threats to Validity
	4.7 Continuous Differential Regression Testing

	5 Related Work
	6 Conclusion
	References

