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ABSTRACT

To understand, localize, and fix programming errors, developers

often rely on interactive debuggers. However, as debuggers are soft-

ware, they may themselves have bugs, which can make debugging

unnecessarily hard or even cause developers to reason about bugs

that do not actually exist in their code. This paper presents the

first automated testing technique for interactive debuggers. The

problem of testing debuggers is fundamentally different from the

well-studied problem of testing compilers because debuggers are in-

teractive and because they lack a specification of expected behavior.

Our approach, called DBDB, generates debugger actions to exercise

the debugger and records traces that summarize the debugger’s be-

havior. By comparing traces of multiple debuggers with each other,

we find diverging behavior that points to bugs and other notewor-

thy differences. We evaluate DBDB on the JavaScript debuggers

of Firefox and Chromium, finding 19 previously unreported bugs,

eight of which are already fixed by the developers.
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1 INTRODUCTION

Interactive debuggers are a powerful tool to find and correct bugs in

programs. Unlikemuch simpler methods, such as printf-debugging,

interactive debuggers allow the developer to directly follow the

program at runtime. In particular, one can pause the execution at

points of interest through breakpoints, closely examine control-flow

through stepping, and inspect intermediate program state, such as

the call stack and the values of variables.
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Figure 1: JavaScript debugger of Firefox 54 incorrectly

pauses at a breakpoint in dead code. Bug found with DBDB.

As debuggers are a crucial tool in the development workflow,

they obviously should be correct. Figure 1 demonstrates that this

is not always the case, even when debugging a seemingly simple

program: Since the if-condition evaluates to false , the statement

at line 2 is never executed and nothing gets written to the console.

Yet, when a breakpoint is set at line 2 in the Firefox debugger, it

pauses, which gives the impression that dead code is executed.1

Such bugs in debuggers are very confusing because they can lead

developers to believe their code is wrong even though it is correct.

Even worse, bugs in debuggers can make it hard or even impossible

to understand actual bugs, e.g., when a developer cannot set a

breakpoint at a valid code location,2 when variables are shown with

wrong values,3 or when the debugger obscures the actual control-

flow by not pausing where it should.4 Even when a debugger is

not as blatantly wrong as shown in Figure 1, there are often subtle

differences between two debugger implementations for the same

programming language. Such differences are equally worrying, not

just because developers are confused when behavior changes just by

switching tools, but also because it shows that some of the intended

behavior of debuggers is not well-specified.

Related Ideas. Finding bugs and other unexpected behavior in de-

buggers is a surprisingly understudied problem. The closest existing

line of work addresses the correctness of compilers and interpreters.

One approach is software verification, which has been successfully

applied, e.g., in CompCert [21]. When the programming language

is well-specified, many compilers and interpreters can also build

on extensive conformance suites [12] or large test suites that are

manually written by the developers [33, 38]. Unfortunately, manual

tests are laborious to write and thus often insufficient. The lack of

manual testing has lead to research on automatic testing of devel-

oper tools, where the tool under test is executed with generated

programs. Such techniques have found hundreds of bugs in compil-

ers [20, 39], interpreters [14], and other programming tools, such

as refactoring engines [9].

Challenges. Unfortunately, debuggers differ from compilers and

interpreters in key aspects that make it challenging to directly apply

the above ideas. First, unlike compilers, debuggers take not just a

program as input but also allow the user to steer the debugging

1https://bugzilla.mozilla.org/show_bug.cgi?id=1370648.
2https://bugs.chromium.org/p/chromium/issues/detail?id=784852.
3https://bugzilla.mozilla.org/show_bug.cgi?id=1362432.
4https://bugzilla.mozilla.org/show_bug.cgi?id=1362403.
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session, often through a graphical user interface (GUI) or command-

line interface. The debugging actions a user issues there, such as

setting breakpoints and stepping, determine the debugger’s behav-

ior. A challenge for effective debugger testing is to generate such

debugging actions alongside a given program-to-debug.

Second, interactive debuggers, as the name implies, differ from

compilers because debuggers interact with the user, instead of

taking all inputs at once in the beginning and producing outputs

only at the end of the execution. After each debugger input (e.g.,

a step action), the debugger pauses and only then shows the next

outputs (e.g., the line that is executed), waiting for the next input

from the user. The problem is compounded by the fact that previous

outputs determine the next possible inputs. For example, stepping is

no longer possible when the execution is finished. For these reasons,

automatic testing of debuggers cannot simply generate all inputs

łofflinež before the debugging session, unlike in compiler testing.

Third, debuggers often lack a precise specification of the intended

behavior. Whereas many compilers and interpreters follow a lan-

guage standard [1, 2, 16], we are only aware of few attempts to

specify the behavior of debuggers, none of which target real-world

debuggers [3, 35]. Without a specification, conformance testing and

formal methods cannot be applied to debuggers.

Approach. We present DBDB, an automatic, differential testing

technique to detect diverging behaviors of debuggers. The basic

idea is to automatically interact with two supposedly equivalent

debuggers to find a divergence of their behavior. We base our work

on a simple model of interactive debuggers as finite-state trans-

ducers. In this model, debuggers take debugging actions as inputs,

such as setting a breakpoint in a specific line, resuming, or stepping,

and return outputs that capture the behavior of the debugger, e.g.,

which line is currently executing or the values of local variables.

Given two debugger implementations for the same programming

language, DBDB generates debugging actions, executes them in

parallel in both debuggers, and compares their behavior. Since de-

buggers are interactive, the approach iterates between generating

actions and comparing outputs until finding diverging behavior.

The lack of a commonly accepted specification of debuggers results

in a large number of these diverging behaviors, too many for direct

manual inspection. To reduce the inspection effort, we assign each

diverging behavior an equivalence class and then only inspect these

equivalence classes.

Results. We evaluate DBDB on the widely used JavaScript de-

buggers of Firefox and Chromium. We exercised them with a total

of 26,931 generated actions in 2,050 debugging sessions. After less

then 20 executed actions, already 82.5% (1,692) of the debugging

sessions show diverging behavior between Firefox and Chromium.

Among these diverging behaviors are at least 20 bugs, 19 of

which were previously unknown and we thus reported to the re-

spective developers. Of the five reported Chromium bugs, four are

already fixed by the developers. In the Firefox debugger we reported

14 bugs, four of which are now marked as fixed. Apart from bugs,

we have also found many subtle differences between the Firefox

and Chromium debuggers. Understanding these undocumented dif-

ferences can pave the way to a precise specification of the intended

behavior of debuggers and could help different vendors to agree on

a common debugger interface.

var foo = 2;
function aȺȻ {
  ...
}
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Figure 2: DBDBoverview: differential testing finds diverging

behaviors, which are then assigned to equivalence classes.

Contributions. In summary, this paper contributes the following:

· We identify common functionalities of interactive debuggers and

model them as a finite-state transducer that translates debugging

actions to outputs (Section 3.1).

· We present the first differential testing technique for debuggers.

The technique uses feedback-directed test input generation to

account for the interactive nature of debuggers and assigns di-

verging behavior to equivalence classes to reduce the manual

inspection effort. (Section 3.2 to 3.4).

· We provide empirical evidence that the approach effectively

reveals bugs and other diverging behavior in widely used debug-

gers. (Section 5).

· We make our implementation and results available to the public

under https://github.com/sola-da/DifferentialDebuggerTesting.

2 OVERVIEW AND MOTIVATING EXAMPLE

This section gives an overview of our approach and explains the

main steps with a simple example. Figure 2 shows the main parts of

our approach. The input to DBDB is a program-to-debug and two

debuggers that are supposed to provide the same debugging func-

tionalities. For our running example, suppose these debuggers are

the JavaScript debuggers of Firefox and Chromium. The approach

interacts with both debuggers side-by-side by generating debugging

actions, such as setting breakpoints and stepping through the pro-

gram. During this interaction, the approach tracks the behavior of

both debuggers and searches for any inconsistencies. When DBDB

detects any diverging behavior, it stops the interaction and reports

the difference as a pair of execution traces.

As a running example, consider the JavaScript code in Figure 3.

The code iterates through an array and then executes two if-

statements that each define a local variable. The let keyword indi-

cates that these variables are local to the surrounding block scope,

i.e., they are visible only within their respective then-branches.

Suppose that DBDB starts debugging the code in Figure 3 by setting

a breakpoint at line 1. Because both debuggers indicate that set-

ting the breakpoint was successful, the approach generates another

action by setting a second breakpoint at line 3. The Chromium

611

https://github.com/sola-da/DifferentialDebuggerTesting


Feedback-Directed Differential Testing of Interactive Debuggers ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

1 var array = [1, 2, 3];
2 for (prop in array) {
3 console.log("hi"); // Bug: Cannot set breakpoint here
4 }
5 if (array.length > 0) {
6 let firstVar = "first";
7 }
8 if (array.length > 1) {
9 let secondVar = 23; // Bug: Appears to be "first"

10 }

Figure 3: Running example.

debugger confirms the breakpoint at line 3. In contrast, the Firefox

debugger slides the breakpoint to line 5. Breakpoint sliding is a com-

mon debugger feature to prevent users from setting breakpoints

at, e.g., empty lines and comment-only lines. But the difference ob-

served here is clearly unintended, as it makes it impossible to debug

the statement at line 3. Our approach detects this difference, which

has been fixed in Firefox 55 after we reported it to the developers.5

After finding a difference between the two debuggers, DBDB

continues to explore more behavior. Suppose that DBDB starts

debugging the code by setting a breakpoint at line 8. Then, the

approach starts the program’s execution and the code hits the

breakpoint in both debuggers. As the next action, suppose that

DBDB issues a step in action and the debugger subsequently pauses

execution at line 9. Whenever the debugger is paused, our approach

compares the program state reported by both debuggers. In this

example, the comparison shows that Firefox claims secondVar to

have the value "first", whereas the Chromium debugger claims

secondVar to be undefined . This surprising inconsistency is due to

a bug in Firefox, which accidentally shows the value of firstVar,

even though that variable is not in scope at line 9. We have reported

this problem and the Firefox developers confirmed that it is a bug.6

The example illustrates that real-world interactive debuggers, as

any other software, are not free of bugs. Since developers heavily

rely on these tools to debug their own code, finding such prob-

lems is important. The following section presents our approach for

finding unexpected and underspecified behavior of debuggers via

differential testing.

3 APPROACH

This section formally defines the problem addressed by DBDB and

describes our approach in detail. The basis of our approach is a finite-

state model of interactive debuggers (Section 3.1). Building on top

of this model, Section 3.2 defines the problem of finding diverging

behaviors for a given pair of debuggers. Section 3.3 presents our

algorithm to address this problem through automatic, differential

testing. Finally, Section 3.4 describes a technique to assign diverging

behaviors to equivalence classes, which eases the task of manually

inspecting and understanding differences between debuggers.

3.1 Finite-State Model of Interactive Debuggers

Implementations of real-world interactive debuggers are complex

and analyzing them is non-trivial. To keep our approach generic

and independent of a specific debugger or programming language,

we abstract interactive debuggers into a formal model. The model

5https://bugzilla.mozilla.org/show_bug.cgi?id=1362416.
6https://bugzilla.mozilla.org/show_bug.cgi?id=1363328.

Σ ::= BpAction | ExecAction | ε (Actions)

BpAction ::= Set breakpoint at line |

Remove breakpoint at line

ExecAction ::= Start execution | Resume |

Step in | Step out | Step over

Γ ::= BpOutput | (Outputs)

ProgramState |

Execution finished |

ε

BpOutput ::= Breakpoint set at line | Removed | Not removed

ProgramState ::= ⟨line, callStack, vars⟩

callStack ::= name∗

vars ::= (name : type = value?)∗

line ∈ N, line numbers (Meta Variables)

name ∈ identifiers

type ∈ types

value ∈ primitive values

Figure 4: Grammars of debugging actions and outputs.

focuses on features common to most real-world interactive debug-

gers and abstracts away properties of debuggers that are irrelevant

for analyzing them.

Our model is based on finite-state transducers (FSTs). FSTs are

a variant of finite-state machines where each transition can both

consume input and produce output. They are widely used in natural

language processing, e.g., for machine translation or part-of-speech

tagging [27]. An FST model fits the interactive nature of debuggers,

where inputs are debugging actions triggered by a user and outputs

represent the resulting behavior of the debugger. More formally,

we represent a debugger as follows:

Definition 1 (Debugger). A debugger for a program P is a 5-tuple

(Q,q0, Σ, Γ,δP ) where

· Q is a finite set of states,

· q0 ∈ Q is the initial state,

· Σ is a set of input symbols that represent debugging actions the

user can trigger,

· Γ is a set of output symbols that represent debugger behavior,

· δP : (Q×Σ)×(Γ×Q) is a transition relation that maps the current

state and some debugging action to the behavior produced by

the debugger and the next debugger state.

Figure 4 summarizes the inputs and outputs considered in this

work by showing the grammars for the input and output languages

Σ and Γ. Debugging actions in Σ are either related to breakpoints

(BpAction) or control the execution of the program (ExecAction).

Debugging outputs in Γ are either breakpoint-related (BpOutput),

provide details about the current program state (ProgramState), or

indicate that the program has terminated. We will explain the sym-

bols and how they relate to real-world debuggers in the following.

Figure 5 shows the states Q and the transition relation δP of a

debugger. We model debuggers as having three states: not running,

running, and paused. The debugger transitions between two of these

states q and r when taking an action x as input and in turn exhibits

some behavior represented by a debugging output y. In the figure
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ε :
Paused at line
Call stack: fnǒ, fnǓ, …
Variables: nameǒ = valueǒ, …Start execution : ε

Set breakpoint at line : Breakpoint set at line

ε : Execution finished

Resume
Step in/out/over : ε

Remove breakpoint at line
Removed
Not removed
:

Running

Running Paused

Not

Figure 5: Interactive debuggers as finite state transducers. In

transitions, ł:ž separates inputs (green) from outputs (blue).

and in the following definitions, we use the notation q
x :y
−−−→ r for

such a transition (q,x ,y, r ) ∈ δP . A transition where the input is the

empty word ε indicates some behavior that is not directly triggered

by the user. Likewise, we assign an output ε to debugging actions

that do not have an immediate output.

Besides debugging actions, the behavior of a debugger depends

on the program-to-debug P . We model this dependency by indexing

the transition relation δP with P . Since P can keep internal state,

the next debugger state and output depends not only on the current

debugger state and action, but also on P ’s state. Apart from δP , all

other parts of our model are independent of the program-to-debug.

Initially, the program-to-debug P is not executing and the de-

bugger is in the state q0 = not running. In this state, users can set

and remove breakpoints, either by clicking on line numbers in a

GUI or in a prompt of, e.g., GDB or LLDB. Set breakpoint actions

and remove breakpoint actions have an immediate output: the line

where the breakpoint was set and whether removing a breakpoint

was successful, respectively.

The start execution action transitions the debugger to the run-

ning state and runs the program P . In the running state, debuggers

do not display any information about the execution to the user.

Only when a breakpoint is hit or a step completes, the debugger

transitions to the paused state and during that transition outputs

information about the current program state. In our model, this

output of program state comprises three pieces of information

⟨line, callStack, vars⟩:

· in which line the program has paused,

· the callStack as a sequence of function names, and

· the set vars of local variables, along with their types and, for

primitive types, their values.

Issuing a resume action, e.g., by clicking on in a graphical de-

bugger or by typing continue in a prompt, transitions back to the

running state until the next breakpoint is hit. Similarly, stepping

through the program continues execution until the next step of

computation completes. We model three kinds of steps:

· Step in ( ), which executes the next statement and, if it is a

function call, stops at the beginning of the callee.

· Step out ( ), which executes all statements until the end of the

current function.

· Step over ( ), which executes the next statement and, if it is a

function call, does not enter the function for debugging.

The execution of the program-to-debug can also just finish with

a transition back to the not running state. This case happens when

the program terminates without hitting any further breakpoint and

without pausing after a step.

It is important to point out that it differs significantly from pro-

gramming tools considered in related work, in particular, compilers.

When testing compilers [20, 39] and other development tools [9],

the input consists of only a program. In contrast, debuggers expect

user actions as an additional input. Another difference is that exist-

ing compiler testing is non-interactive, i.e., the produced program

produces only a single output, such as its exit code. In contrast,

debuggers alternate between taking input and producing output.

3.2 Problem Statement

Based on the finite-state model of debuggers in Definition 1, we now

define the problem addressed in this work. The overall goal is to

find and understand diverging behaviors between two supposedly

equivalent debuggers for the same programming language. The

following formally defines diverging behavior.

Definition 2 (Diverging behavior). Given a program P , two debug-

gers (Q,q0, Σ, Γ,δP ) and (Q̃, q̃0, Σ̃, Γ̃, δ̃P ) have diverging behavior if

two sequences of transitions exist:

q0
x :y
−−−→ ..

x ′:y′

−−−−→ r and q̃0
x̃ :ỹ
−−−→ ..

x̃ ′:ỹ′

−−−−→ r̃

where q0 = q̃0, x = x̃ , y= ỹ, x
′
= x̃ ′, but where either y′, ỹ′ or r , r̃ .

That is, given the same sequence of actions dispatched to both

debuggers, diverging behavior means that either the outputs y′ and

ỹ′ differ or that the states r and r̃ reached by the debuggers differ.

The goal of our approach is to find sequences of inputs that lead

to diverging behavior. We assume that the programs-to-debug are

provided. The problem of finding suitable programs is related to

generating inputs for compiler testing, and our approach may be

combined with existing work on generating programs. We further

assume that the debugger and the programs-to-debug are determin-

istic, which is a common assumption to make testing reproducible.

3.3 Interactive Differential Testing

We address the problem of finding diverging behavior between two

debuggers through interactive differential testing. The basic idea

is to compare two supposedly equivalent debuggers by continu-

ously generating debugging actions and by checking the resulting

behavior for inconsistencies.

Challenges. To motivate our interactive approach, we first out-

line several challenges inherent to testing of debuggers. Many

typical uses of debuggers involve a combination of actions, e.g.,

first setting a breakpoint and then stepping once it is hit. Unfortu-

nately, generating a sequence of such actions ahead of time based

on the grammar for Σ is ineffective for three reasons. First, once

the program-to-debug terminates, the debugger cannot take more

actions and any remaining actions have been generated in vain.

Second, some actions that are legal according to the grammar of Σ

are illegal for reasons only known at runtime. Consider setting a

breakpoint at line 7 of Figure 3. Both debuggers slide the breakpoint

to the next line because there is no code to execute at the closing

brace. Now, setting a second breakpoint in line 8 is not allowed
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and our approach must not generate such an action.7 Third, once

an action causes diverging behavior between debuggers, the anal-

ysis has reached an inconsistent state that will only cause more

diverging behavior. Consider again the example in Figure 3. When

requesting a breakpoint at line 3, Firefox slides it to some later line

due to a bug, whereas Chromium correctly sets it at line 3. Execut-

ing more actions, e.g., resumes and steps, after this first divergence

is uninformative since they will likely result in more diverging

behavior because the breakpoints were different. Such follow-up

divergences are not relevant on their own but merely the result of

having reached an inconsistent state earlier on.

Our algorithm addresses the challenge of testing interactive de-

buggers by issuing actions to two debuggers side-by-side and com-

paring their behavior after each action. The approach is feedback-

driven in the sense that the behavior triggered by previous actions

influences what actions to trigger next. Once the approach observes

a difference in behavior between the two debuggers, it stops and

reports two traces that summarize the executions.

Definition 3 (Trace). A trace t is the result of interacting with

a debugger D on a program P . The trace is a sequence ⟨e1, .., en⟩

of n events, where each event is either an action or an output, i.e.,

ei ∈ Σ ∪ Γ ∀ 1 ≤ i ≤ n.

The goal of DBDB is to find traces tA and tB , one per debugger,

that share a common prefix but then diverge in the resulting be-

havior after the final action. For an example of two such traces,

consider Figure 6a. The first event in both traces is a set breakpoint

action, followed by the corresponding debugger output. The traces

share the same actions and outputs up to the final łStep overž. Only

then, the debugger behaviors diverge, with Chromium pausing in

line 25 of the program, whereas Firefox pauses in line 26.

Algorithm 1 summarizes the main steps of our approach for

obtaining such traces by automatically interacting with two debug-

gers,DA andDB , on a program P . The current state of a debuggerD

is given by D.state. We indicate with D.action() that DBDB triggers

one of the actions defined by Σ (Figure 4). We assume each triggered

action is added to the trace of the corresponding debugger.

The algorithm consists of three parts: manipulating breakpoints

before running the program, starting the program execution, and

stepping and resuming during program execution. The first part

(lines 2 to 13) sets breakpoints at randomly chosen lines and prob-

abilistically removes them again until obtaining a configurable

overall number of breakpoints. For each set breakpoint, the algo-

rithm compares the actual breakpoint location chosen by the two

debuggers. The intended and the actual breakpoint locations may

differ, e.g., because debuggers slide breakpoints instead of adding

them to empty lines. If the actual locations differ, the algorithm

has detected diverging behavior and therefore stops and returns

the trace. Otherwise, the algorithm tries to remove the breakpoints

again and checks whether both debuggers agree that removing the

breakpoint is possible. While it may appear obvious that removing

breakpoints is possible, we found a bug in a debugger that ignored

a users request to remove a breakpoint.8

7Setting two breakpoints in the same line is prevented in GUI-based debuggers because
clicking on line numbers toggles a breakpoint. But in lower-level debugging APIs, e.g.,
of Chromium, an error is thrown when setting two breakpoints at the same line.
8https://bugzilla.mozilla.org/show_bug.cgi?id=1362439.

Algorithm 1 Interactive differential analysis

Input: Debugger DA,DB and program P

Output: Traces tA, tB of actions and outputs

1: Assume: DA .state = DB .state = not running

▷ Manipulate breakpoints:
2: BPs← ∅

3: while |BPs | < max number of breakpoints do

4: l ← randLine(P)

5: if l ∈ BPs then

6: continue

7: lA ← DA .setBp(l); lB ← DB .setBp(l)

8: if lA , lB then

return łDiverging behavior: Bp locationž

9: if randProb() < prob. of removing breakpoint then

10: okA ← DA .rmBp(l1); okB ← DB .rmBp(l2)

11: if okA , okB then

return łDiverging behavior: Bp removalž

12: else

13: BPs← BPs ∪ {lA, lB }

▷ Start program execution:
14: DA .startExec(); DB .startExec()

▷ Step and resume:
15: repeat

16: Wait until DA .state , running and DB .state , running

17: if DA .state = DB .state = not running then

return łProgram finishedž

18: if DA .state , DB .state then

return łDiverging behavior: Terminationž

19: if DA .programState , DB .programState then

return łDiverging behavior: Program statež

20: action← randPick({resume, stepIn, stepOut, stepOver})

21: DA .action(); DB .action()

22: until max number of execution actions

The second part of the algorithm (line 14) starts the program’s

execution with the debugger attached to it. The execution will con-

tinue until stopping at a breakpoint or until the program terminates.

The third part of the algorithm (lines 15 to 22) repeatedly steps

through the program or resumes execution until hitting a break-

point or program termination. The algorithm waits until both de-

buggers leave the running state and then checks if their behavior

is consistent.9 If one but not the other debugger has reached the

end of the program, then the algorithm reports a diverging behav-

ior. Otherwise, if both debuggers pause the execution, then the

algorithm compares the program states (line, callStack,vars) and

(l̃ine, �callStack, ṽars) reported by the debuggers. If the states differ,

e.g., because the debuggers have paused at different locations or

because they show different call stacks, then the algorithm returns

a trace that summarizes the diverging behavior. Finally, if there

is no observable difference between the two debuggers, the algo-

rithm triggers a randomly selected execution action (resume or

steps) in both debuggers. This process continues until reaching a

configurable maximum number of actions.

9We assume that the program-to-debug terminates. If a debugger never leaves the
running state, then it has a bug that can be detected without any differential analysis.
We have not encountered this case in our evaluation.
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23 // Program 1
24 ...
25 for (let i=0; i < 3; i++) {
26 console.log(i);
27 }
28 ...

Firefox debugger :

Set breakpoint at line 25

Breakpoint set at line 25

...

Start execution

...

At line 25, call stack ...

Step over

At line 26, call stack ...

Chromium debugger :

Set breakpoint at line 25

Breakpoint set at line 25

...

Start execution

...

At line 25, call stack ...

Step over

At line 25, call stack ...

(a) Program 1 and corresponding pair of traces.

≈

40 // Program 2
41 ...
42 var x = 10;
43 for (var j = 7; j < x; j++) {
44 // Some statements
45 ...
46 }

Firefox debugger :

Set breakpoint at line 43

Breakpoint set at line 43

...

Start execution

...

At line 43, call stack ...

Step over

At line 44, call stack ...

Chromium debugger :

Set breakpoint at line 43

Breakpoint set at line 43

...

Start execution

...

At line 43, call stack ...

Step over

At line 43, call stack ...

(b) Program 2 and corresponding pair of traces.

Figure 6: Example of equivalent diverging behaviors exposed by two different programs.

3.4 Equivalence Classes of Diverging Behavior

Running DBDB once with a single program-to-debug may or may

not expose diverging behavior. For effective testing, we apply the

approach to multiple programs and repeatedly debug each program

with different random seeds. The random seed controls all non-

deterministic decisions made by Algorithm 1, such as which actions

to trigger. Aswe show in Section 5, repeatedly comparing real-world

debuggers produces thousands of traces with diverging behaviors in

a few minutes. While this abundance of diverging behavior shows

the effectiveness of our differential testing approach, it also leads

to the non-trivial challenge of inspecting the diverging behaviors.

Manually inspecting all diverging behaviors is practically infeasible.

One way to address this challenge is to uniformly sample all

diverging behaviors and to inspect only a subset of them. However,

we find that many divergent behaviors are similar and likely have

the same root cause. As a motivating example, consider Figure 6,

which shows two programs-to-debug that each expose diverging be-

havior between the JavaScript debuggers of Firefox and Chromium.

Below Program 1 and 2, the respective pairs of traces that expose

the diverging behavior are shown. Even though the diverging be-

haviors are caused by different programs, three key characteristics

are common between Figure 6a and 6b: (1) the last action is a łStep

overž, (2) that action is issued at a for-loop, and (3) the diverging

behaviors are due to program state, in particular, the lines where

the debuggers pause.

We avoid manually inspecting too many of these similar cases

by first dividing diverging behaviors into equivalence classes:

Definition 4 (Equivalence classes of diverging behavior). Let P1 and

P2 be two programs-to-debug, and letDA andDB be two debuggers.

Suppose that the pairs of traces (t1
A
, t1
B
) and (t2

A
, t2
B
) both expose a

diverging behavior, where t i
X
is the result of debugging program

Pi in debugger DX . The two diverging behaviors are in the same

equivalence class if

· the last debugging action is the same in t1
A
, t1
B
, t2
A
, and t2

B
,

· the AST node type of the source code line where the last action

was triggered is the same for both P1 and P2, and

· the type of diverging behavior between t1
A
and t1

B
is the same as

for the diverging behavior between t2
A
and t2

B
.

To compute the AST node type of a source code line l , we parse

the program-to-debug and then search the lowest AST node that in-

cludes all tokens in l . We compare AST node types and not program

lines directly, because AST node types abstract away program-

specific properties, such as concrete line numbers or identifiers.

The type of diverging behavior is determined by the return

value of Algorithm 1. Specifically, there are six types of diverging

behaviors (line numbers refer to Algorithm 1):

· Breakpoints are set at different locations (line 8).

· Breakpoints cannot be consistently removed (line 11).

· One but not the other debugger terminates (line 18).

· The program state in both debuggers is different (line 19), subdi-

vided by which part exactly differs (see Figure 4):
◦ the debuggers paused at different lines, or
◦ the function names on the call stack differ, or
◦ the variables and their types and values differ.

Then, we draw our samples for manual inspection from the

equivalence classes in a round robin manner instead of uniformly

sampling all diverging behaviors. The technique is a heuristic that

is independent of the programming language and we show in Sec-

tion 5 that it results in a more diverse set of inspected diverging

behaviors, which ultimately leads to more found bugs.

Reiterating on the example in Figure 6, our technique assigns

the two diverging behaviors to the same equivalence class because

all three conditions from Definition 4 are met. In this particular

case, the two diverging behaviors are even caused by the same root

cause: the Chromium debugger always pauses at each substatement

when stepping over a for-loop header, whereas in Firefox a łStep

overž always goes to the next line.

4 IMPLEMENTATION

We have implemented DBDB in TypeScript and run it, after com-

pilation to JavaScript, in Node.js. Firefox and Chromium offer a

programmatic interface to their debuggers through their respective

remote debugging protocols (RDP). That is, we do not test the de-

buggers, for example, by clicking in the GUI, but directly exchange

RDP messages with the debuggers via a WebSocket connection.
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For Chromium, we build on the chrome-remote-interface library,10

which already offers a simple abstraction, e.g., to attach the debug-

ger to a JavaScript program, set breakpoints, and perform other

debugging actions. For Firefox, we implement the RDP ourselves

since no up-to-date RDP library has been available. On top of these

low-level remote debugging protocols, we implemented a common,

higher-level API for both debuggers. To make sure that every found

diverging behavior is not just visible at the remote debugging proto-

col level, we also manually reproduced every bug in the debuggers’

GUIs. In particular, all our bug reports include videos of the visibly

wrong behavior in the GUI. The implementation is publicly available

under https://github.com/sola-da/DifferentialDebuggerTesting.

5 EVALUATION

5.1 Experimental Setup

We apply DBDB to two popular JavaScript debuggers: Firefox 54.0

and Chromium 59.0.3071.109. We run DBDB on a laptop with 8GB

of system memory and an Intel Core i5-5200U CPU. The operating

system is Ubuntu 16.10 64-bit.

We use 41 JavaScript programs-to-debug that are obtained from

three sources: First, we use 26 programs from SunSpider, a JavaScript

benchmark, version 1.0.2, which according to the original announce-

ment cover a łwide variety of numerical, array-oriented, object-

oriented, and functional idiomsž [30]. Second, we use 11 JavaScript

puzzles for students from a program analysis lecture at TU Darm-

stadt. The puzzles cover corner cases of the language, making these

programs also a potential challenge for developers of debuggers.

Third, we use four programs written by us that cover newer lan-

guage features, such as let or const, as these features are not used

in the other programs. To ensure that the programs-to-debug are

deterministic, we fix the current time and replace Math.random with

a deterministic function.

5.2 Qualitative Analysis

Applying DBDB to the 41 programs-to-debug reveals various di-

verging behaviors between debuggers. They range from clear bugs

in one of the debuggers to underspecified behavior, where neither

of the debuggers is clearly wrong, but that is nevertheless inter-

esting. We have found 20 clear bugs, 19 of which were previously

unknown and which we have subsequently reported to the devel-

opers of Firefox and Chromium. Seven of the reported bugs have

already been fixed. The following discusses a selection of diverging

behaviors in addition to the ones presented earlier in the paper.

Chromium Issue 730177. Example 1 in Table 1 shows a bug related

to breakpoints in the Chromium debugger. A breakpoint is set in

the last line of the 3d-cube.js SunSpider program, shown as an

excerpt. Although line 4 is empty, we would expect the breakpoint

to stay there since the program ends with this line. Firefox exhibits

the correct behavior, but Chromium moves the breakpoint to the

first line of the program. This diverging behavior was caught by

DBDB, we subsequently submitted a bug report, which has been

confirmed and fixed.11

10https://github.com/cyrus-and/chrome-remote-interface/
11https://bugs.chromium.org/p/chromium/issues/detail?id=730177

Firefox Issue 1362403.12 Example 2 demonstrates a bug in the

pausing and stepping behavior of a debugger. By comparing pause

locations between debuggers, DBDB has found that the Firefox

debugger does not step through each iteration of a for-in-loop in this

excerpt from the SunSpider program regexp-dna.js. In particular,

when paused at the loop header (line 2), issuing only two Step In

actions ( ) takes the debugger past the loop to line 5, even though

its body executes more than once. Chromium behaves correctly

and pauses twice (and more often) at line 3.

Firefox Issue 1362432.13 In Example 3, the debugger severely mis-

represents the actual program state during execution. It was found

by DBDB when debugging one of the aforementioned JavaScript

puzzlers. JavaScript allows developers to repeat parameter names

when declaring functions. Inside the function foo, param should

be bound to the second supplied argument ("second"). The run-

time behavior is correct (confirmed by the output), but the Firefox

debugger shows the variable with the wrong value "first".

Besides clear misrepresentations of the actual runtime behavior, we

have also found other diverging behaviors between the Firefox and

Chromium debuggers. These diverging behaviors are also valuable

to detect; firstly, because diverging behaviors are confusing when

switching debuggers and secondly, because they indicate that the

intended debugger behavior is not well-specified.

Possible Breakpoint Locations. Several instances of underspeci-

fied behavior are related to the question where it should be possible

to set breakpoints. Example 4 in Table 1 demonstrates that Fire-

fox allows to set a breakpoint at the literal true in line 4 (and

subsequently pauses there when execution is started), whereas

Chromium slides the breakpoint to the next line. Neither is clearly

wrong and it is open for specification whether setting breakpoints

at all function arguments should be possible (for consistency and

so that developers can inspect each individually) or only at non-

literals (because it is unclear what is actually executed at literals).14

DBDB found several more such cases, e.g., Firefox allows to set

breakpoints at while(true), but Chromium does not.

Step Semantics and Whitespace. Another large class of under-

specified behaviors is related to steps. While Firefox and Chromium

agree on stepping over a single function call, it is not clear what the

correct behavior should be when stepping over other statements.

The last example in Table 1 shows that a single step in Firefox jumps

over multiple statements if they are in a single line. Chromium, on

the other hand, steps over each statement individually and thus

pauses multiple times in the same line. Even to a Firefox devel-

oper, the correct intended behavior was not clear.15 Phrased more

generally, it is open whether debugging should be altogether łin-

dependentž of whitespace (or other non-semantic tokens). That is,

should, e.g., the number of steps to reach some statement always

be the same, even if such tokens are inserted?

Overall, the examples illustrate that the diverging behaviors found

by DBDB affect all kinds of actions and outputs our debugger model

12https://bugzilla.mozilla.org/show_bug.cgi?id=1362403
13https://bugzilla.mozilla.org/show_bug.cgi?id=1362432
14See comment at https://bugzilla.mozilla.org/show_bug.cgi?id=1370641#c4.
15See comment at https://bugzilla.mozilla.org/show_bug.cgi?id=1370655#c2.
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Table 1: Examples of detected diverging behaviors.

ID
Affected

debugger
Excerpt of program-to-debug

Excerpt of trace with

detected difference
Description

1 Chromium
1 // Beginning of program
2 DisplArea = null;
3 EOF

Set breakpoint at line 3

Breakpoint set at line 1

Breakpoint set in empty last line

wraps around and is set at

beginning of program.

2 Firefox

1 for (k in subs)
2 dnaInput = ...
3

4 var expectedDNAOutputString = ...

Paused at line 2...

Step in

Paused at line 3...

Step in

Paused at line 5

Step in pauses only once at

for-in-loop body, even though

multiple iterations are executed.

Gives impression that loop is

executed only once.

3 Firefox

1 function foo(param, param) {
2 console.log(param);
3 }
4 foo("first", "second");

Paused at line 2 ...

Variables:

param = "first"

Function parameter with repeated

name is shown with wrong value

(but execution is correct).

4 Both

1 function bar() { ... }
2 function foo(a, b) {}
3 foo(
4 true,
5 bar()
6 );

Set breakpoint at line 4

Breakpoint set at line 4/5

...

Start execution

Paused at line 4/5

Firefox allows setting breakpoints at

literals and also pauses there,

Chromium does neither.

5 Both 1 a = "foo"; b = "bar"; c = "baz";

Paused at line 2

Step over

Paused at line 3/2

Step over in Firefox pauses at next

line, even if current line has

multiple statements. Chromium

steps once per statement.

considers. Out of the 20 found bugs, eight are related to setting and

removing breakpoints, e.g., when breakpoints cannot be set but are

slided away from valid program constructs, or when breakpoints

cannot be removed. Seven bugs are related to stepping and pausing,

e.g., when the debugger does not halt at breakpoints or after steps,

or when the debugger pauses too often or even at dead code (see

Figure 1). Finally, five bugs are related to other program state, e.g.,

when the debugger does not show some variables at all or shows

them with wrong values.

5.3 Quantitative Analysis

5.3.1 Effectiveness of Finding Diverging Behavior. We evaluate the

effectiveness of DBDB by means of three questions:

· How often does the approach find diverging debugger behavior?

· How many actions are required to find diverging behavior?

· Which types of diverging behavior are the most common?

We can answer all three questions with the help of Figure 7. The x-

axis shows how many actions have been generated. In the leftmost

case, only breakpoint actions were generated and the program-to-

debug is not yet running. At x = 1, only the start execution action

is generated and from x > 1 resumes and steps are generated as

well. The y-axis shows how many test runs have (cumulatively)

completed after x actions. A differential test run completes either

because the program-to-debug finishes executing without finding

diverging behavior (łprogram finishedž, green part of the bar) or

because of diverging debugger behavior (the rest of the bar, all

other colors).

Effectiveness. After at most x = 20 generated execution actions

(i.e., start execution, resume, and steps), we have found some type

of diverging behavior in 82.5% of the runs, which substantiates our

claim that differential testing is effective for debuggers. The high

number of found diverging behaviors (1692 in total) has also mo-

tivated assigning them into equivalence classes for more effective

manual inspection.

Number of Actions. We see at x = 0 that only by setting break-

points and without starting the programs-to-debug, 47.9% (983) of

the test runs already find diverging behavior between debuggers.

After a single start execution action (x = 1), an additional 6% (124)

of the test runs find diverging debugger behavior not due to break-

points. Several programs-to-debug (5.4%, 112) also immediately

finish execution, presumably because all breakpoints were set in

not executed code. With each additionally generated action, more

diverging behaviors are found, which affirms that debugger testing

is more effective when combining several debugging actions. After

five actions, however, the graph quickly saturates and additional

actions find only marginally more diverging behaviors. After 20

generated execution actions, 99.7% (2236) of the runs have com-

pleted and only 14 runs have to be stopped because the maximum

number of actions is reached. This makes clear that 20 execution

actions is sufficient in most executions.

Difference Types. As said before, most diverging behaviors (47.9%,

983) are found without ever executing the program-to-debug, but

simply by comparing breakpoints between debuggers. When com-

paring the program state between debuggers from x ≥ 1 on, we see

that the majority of differences are either because one debugger

already finished executing while the other is still running (light

blue, 8.7% at x = 20) or because the debuggers do not agree on

their pause location (dark blue, 18.8%). Both cases are indicative
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Figure 7: Completed test runs (and their results) per maxi-

mum number of generated execution actions.

Table 2: The top 6 equivalence classes of diverging behavior.

Diff. Type Last Action AST Node Size in %

Set breakpoint Set breakpoint Program 538 31.8%
Set breakpoint Set breakpoint ArrayExpr 72 4.3%
Set breakpoint Set breakpoint BinaryExpr 64 3.8%
Paused line Step in ForStmt 61 3.6%
Set breakpoint Set breakpoint Property 55 3.3%
Paused line Step over ForStmt 51 3.0%

of a debugger either not pausing where it should or pausing too

often. Only a minority of the differences come from comparing call

stack and variables (2.5% and 4.4%, respectively), which correlates

with the smaller number of bugs we have found related to these

debugger features.

5.3.2 Effectiveness of Equivalence Class Sampling. The large num-

ber of found diverging behaviors cannot all be manually inspected

and we thus need to restrict ourselves to a subset. In Section 3.4,

we argued that more diverse diverging behaviors can be found by

first assigning each diverging behavior to an equivalence class and

then sampling these classes in a round robin manner for manual

inspection. We evaluate the effectiveness of this heuristic through

two questions:

· How many equivalence classes exist, and is it feasible to inspect

at least one diverging behavior per class?

· Does sampling diverging behaviors from these classes, instead

of sampling uniformly over all diverging behaviors, help finding

more unique root causes per inspected diverging behavior?

Equivalence Classes. In total there are 112 equivalence classes,

which is a manageable number to manually inspect, in particu-

lar compared to the 1,692 total number of traces with diverging

behavior. This strong reduction is mainly caused by some large

equivalence classes, the top six are shown in Table 2. The largest

equivalence class contains almost a third of all divergent behaviors.

As indicated by the difference type and last action, these diverg-

ing behaviors are caused by setting a breakpoint at the Program

AST node. Program is the root of the JavaScript AST, so this means

a breakpoint was set in an empty or comment line. Almost all

divergent behaviors in this class are instances of a single bug in

Chromium related to breakpoint sliding for empty lines and com-

ments.16 Similarly, the equivalence classes of setting breakpoints

at arrays, binary expressions, or object properties are large because

Firefox allows to set breakpoints at literals (which are common at

these AST nodes), whereas Chromium does not. Finally, we see two

large classes related to stepping and ForStmt , which instances of

the difference in step semantics between Firefox and Chromium

that we explained in Section 5.2.

More Effective Manual Inspection. In response to the second ques-

tion, we evaluated the number of unique root causes we find when

uniformly sampling diverging behaviors compared to when we

sample out of the equivalence classes. A root cause is either an ID

from the issue trackers for bugs that we reported, or an identifier

for consistent semantic differences we found between Firefox and

Chromium. Figure 9 shows that manually inspecting 50 diverg-

ing behaviors from equivalence classes have led us to identify 24

unique root causes, whereas uniformly sampling from all diverging

behaviors uncovers only 12. One explanation for this is rooted in

the large equivalence classes discussed before. When uniformly

sampling diverging behaviors, we get many instances out of these

large classes that are mostly caused by just a single bug.

Regarding the time spent on analyzing diverging behaviors from

equivalence classes and reporting all bugs (including manually

creating minimal test cases), we estimate the effort as less than a

week for one person. We do not evaluate the true positive rate of

DBDB because defining true positives is difficult in the absence of

a clear specification of expected debugger behavior.

5.3.3 Performance. We evaluate the runtime of our approach to

assess whether DBDB could scale to manymore programs-to-debug.

Since the assignment of diverging behaviors to equivalence classes

is performed just once after all differential testing completed and

takes less than two seconds, we exclude it from our measurements.

To evaluate the differential testing of our approach, we debug each

of the 41 programs 50 times with different seeds. That is, even

though the program execution itself remains the same, DBDB sets

different breakpoints and performs, e.g., different steps or resume

actions. Figure 8 summarizes the runtimes of the approach. The

average test run took 448ms, so performance-wise our approach

can be applied to many more programs-to-debug. Obviously the

runtime includes execution of the program-to-debug itself, which

is why some programs taking consistently more time than others.

6 RELATED WORK

Compiler Testing. Compiler testing has a long history [5, 11, 34].

More recent approaches include CSmith [39], which randomly cre-

ates C programs, and łequivalence modulo inputsž [20], which cre-

ates variants of such programswith supposedly equivalent behavior.

Other work empirically compares compiler testing techniques [7],

prioritizes generated test programs to execute bug-revealing pro-

grams earlier [6], generates test programs guided by a type- and

effect-system [26], and enumerates all test programs within some

bounds [40]. Lidbury et al. [22] and Donaldson et al. [10] target

compilers for OpenCL and GLSL programs running on GPUs. All

of these approaches put an emphasis on generating programs as

16https://bugs.chromium.org/p/chromium/issues/detail?id=784852
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inputs for testing, whereas our work on debuggers also considers

the problem of how and when to create user actions.

Differential Testing. The term łdifferential testingž was originally

coined by McKeeman [24]. Apart from compilers, it has been ap-

plied to other development tools, such as refactoring engines [9],

symbolic execution engines [17], x86 disassemblers [28], and binary

lifters [18]. Our work differs by generating not only programs but

also debugger actions associated with the program, and by using

execution feedback to guide the generation. Beyond developer tools,

differential testing can, e.g., be applied to code clones [41], similar

library implementations [37], and supposedly behavior-preserving

subclasses [32]. A related concept is N-version-programming, where

multiple versions of a program are created to increase fault tol-

erance. Experiments with it have shown that similar errors were

made by independent programmers [19], hinting at a potential

shortcoming of our approach: if both debuggers have the same bug,

DBDB cannot find it.

Inspecting Warnings. A recurring problem in automated testing

is the high number of test cases that need to be manually inspected.

Our heuristic of drawing diverging behaviors from equivalence

classes instead of uniformly sampling relates to work by Podgurski

et al. [31], who try to cluster software faults. For evaluating our

equivalence classes, we use a method similar to Chen et al. [8].

Another way to improve how users inspect warnings reported by a

tool is to ask specific questions that may eliminate false alarms [42].

Interactive Testing. Unlike compilers, debuggers are interactive,

which precludes generating all testing inputs beforehand. Our in-

teractive approach that alternates between generating inputs and

comparing outputs is similar to prior work on automated testing of

GUIs [13, 15, 23], which are also interactive.

(Cross-)Browser Testing. Our implementation of DBDB targets

the debuggers in Firefox and Chromium. As such, it is also in the line

of many works that perform cross-browser testing. Roy Choudhary

et al. [36] visually compare websites to identify issues in render-

ing by different browsers and Mesbah and Prasad [25] additionally

incorporate user interaction into the comparison of browser behav-

ior. TreeFuzz compares JavaScript implementations of browsers by

fuzz-generating JavaScript programs [29].

Debugger and Tooling Correctness. An important step to improve

the correctness of debuggers is specifying their intended behavior.

Bernstein and Stark [3] formally define the semantics of a debugger

for a small functional language, but not for a debugger used in

practice. The differences discovered by DBDB may help to identify

situations that require more precise specification. Similar in spirit

to our work is the vision of Cadar and Donaldson [4]. They postu-

late that even though much effort goes into developing program

analyzers, the tools themselves are often not put under enough

scrutiny. They call for łanalyzing the program analyzerž and our

first step is to find bugs in debuggers.

7 CONCLUSION AND OUTLOOK

This paper presents the first approach for automatically testing

interactive debuggers. DBDB compares the behavior of two debug-

gers by exercising them with generated sequences of debugging

actions. Our work builds upon a finite-state model that captures

common features of real-world debuggers. We evaluate DBDB with

the JavaScript debuggers of Firefox and Chromium, where we find

20 clear bugs and several other noteworthy differences. Eight of

these bugs have already been fixed by the respective developers,

and our results have spurred discussions about the intended seman-

tics of debuggers. While testing compilers has received significant

attention, we hope this work motivates more researchers to also

put other development tools under scrutiny. It is worrying that

debuggers, a fundamental development tool for understanding pro-

grams, are themselves buggy and even more so that the intended

semantics of seemingly simple features, such as stepping, are not

precisely specified. Finding behavioral differences between existing

debuggers is a first step towards fixing these problems.
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